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Supplementary Material

A. Details of DBIM

To further validate the effectiveness of our method, we
present Dilated BIM (DBIM), a lightweight version of BIM,
which achieves superior performance with reduced com-
putational complexity and parameter count compared to
MTMamba. In DBIM, we replace MS-Scan with a more
lightweight variant, DMS-Scan, which conducts sparse
scanning within each scanning branch B. Specifically, as
shown in Fig. 7, we perform dilated sampling in generating
multi-scale sequences from image features instead of using
all tokens. When restoring sequences to image features, we
perform linear interpolation. These operations do not intro-
duce any parameters and exhibit a reduced computational
burden due to sampling a subset of tokens for modeling.
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Figure 7. Comparison of MS-Scan and DMS-Scan.

B. More Ablation Studies

Effect of scan mode order in BI-Scan. We performed an
ablation study to assess the impact of the scanning order in
BI-Scan, containing two sequences: TF — PF (Task-First
mode then Position-First mode) and PF — TF (the reverse).
The results in Tab. 9 show that the TF — PF setting achieves
better performance. Importantly, both combined strategies
surpass the performance of using either TF or PF individ-
ually, which verifies the inherent complementarity between
the two scanning modes.

Table 9. Effect of scan mode order in BI-Scan.

Semseg Depth Normal Boundary|FLOPs # Params
mloU 1+ RMSE| mErr]  odsF 1 Gl ™) )

TF 56.36 0.4905 18.67 78.70 510 289
PF 56.96 0.4883 18.68 78.70 510 289
TF — PF| 57.11 0.4856 18.66 78.80 547 290
PF — TF| 56.55 0.4806 18.71 78.70 547 290

Setting

Model efficiency with varying task quantities. To further
validate the linear complexity of our method, we conducted

an experiment on the NYUD dataset with a varying number
of tasks. Specifically, we benchmarked our model’s per-
formance using 2, 3, and 4 tasks. The results, presented
in Tab. 10, show that as the number of tasks increases, the
incremental computational cost (GFLOPs) and the number
of additional parameters both remain constant for each new
task. This observation empirically verifies that our model’s
complexity scales linearly with the number of tasks.

Table 10. Model efficiency with varying task quantities.

Semseg Depth Normal Boundary| FLOPs # Params

Methods| /U1 RMSE| mErr| odsF+ | (G)L (M)
2tasks | 5720 04715 - - 375 304

3tasks | 55.91 04891 18.63 - |461(+86) 346(+42)
dtasks | 57.40 04733 1855 7872 |547(+86) 388(+42)

C. More Visual Comparison Results
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Figure 8. Effect of BI-Scan and MS-Scan on attention patterns.

Effect of BI-Scan and MS-Scan on Task Attention Pat-
terns. To systematically validate the efficacy of our pro-
posed scanning mechanisms in task representation enhance-
ment, we conduct a quantitative visual analysis of attention
patterns in the final MFR block, as illustrated in Figure 8.
Our comparative investigation examines three distinct fea-
ture configurations: (a) Task-specific features (SP), (b) Fea-
tures enhanced by MS-Scan in MSST block (W/ MS), and
(c) Features refined via the BI-Scan in BCFR block (W/ BI).
The results reveal two critical insights: First, the MS-Scan
mechanism substantially enriches task-specific feature de-
tails through multi-scale contextual integration. Second, the
BI-Scan induces task-aligned attention redistribution, effec-
tively suppressing irrelevant spatial responses while ampli-
fying task-critical regions. This synergistic effect is demon-



strated by the progressive attention focusing observed in
white-circled areas of Fig. 8.

Effect of Bidirectional Scan on Task Attention Patterns.
To validate the bidirectional scan efficacy in the BI-Scan
mechanism, we conduct a controlled comparative study of
task attention patterns in the final MFR block under two
experimental configurations: (1) Unidirectional modeling
(w/o BD) with forward scanning only, and (2) Bidirec-
tional modeling (w/ BD), while maintaining identical fea-
ture channel dimensions for fair comparison. As shown by
the white-circled regions in Fig. 9, in the upper panel exem-
plars, bidirectional scanning exhibits enhanced attention lo-
calization in task-critical regions while preserving the struc-
tural integrity of target areas. The lower panel reveals the
model without bidirectional scanning, which erroneously
groups architecturally distinct elements (doors/walls) due
to a flawed understanding of the scene structure. whereas
bidirectional implementation achieves precise separation
through detailed and comprehensive cross-task interactions.
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Figure 9. Effect of bidirectional scan on attention patterns.

Qualitative Comparison with state-of-the-art method.
We present more qualitative results compared with the
SOTA methods. In Figs. 10 to 12, the results indicate that
our method generates more detailed multi-task predictions,
as highlighted in the circled regions.
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Figure 10. More qualitative comparison on NYUD-v2.
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Figure 11. More qualitative comparison on Pascal-Context.
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Figure 12. More qualitative comparison on Pascal-Context.
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