
Supplementary of “MMAIF: Multi-task and Multi-degradation All-in-One for
Image Fusion with Language Guidance”

Zihan Cao1 Yu Zhong1 Ziqi Wang1 Liang-Jian Deng1, 2, ⋆

1 University of Electronic Science and Technology of China (UESTC)
2 Multi-Hazard Early Warning Key Laboratory of Sichuan Province, UESTC

{iamzihan666,yuuzhong1011}@gmail.com, liangjian.deng@uestc.edu.cn
⋆ Corresponding author

Abstract

In this supplementary material, we provide some back-
ground on the mixture-of-experts (MoE) and works about
all-in-one restoration. The derivatives of how to sample
deterministic trained flow matching model in a stochastic
path and the background of recent bridge models. Then,
we include the configuration of the dataset collection stage.
Finally, we provide more quantitative results of MEF and
MFF datasets and visual comparisons with previous meth-
ods.

1. Backgrounds
In this section, we introduce the mixture-of-experts (MoE),
and recent all-in-one methods for image restoration.

1.1. Mixture-of-Experts (MoE)
Shazeer et al. [21] introduced the MoE layer, which com-
prises a set of E experts {Ei(x)} (each typically a FeedFor-
ward network (FFN)) and a learnable router with weights
Wr ∈ RD×E . For a given token representation x ∈ RL×D,
the router selects the top-k experts based on the gating value
computed as S = x ·Wrouter. The MoE layer’s output is
a weighted combination of the selected experts’ computa-
tions, where the weights are normalized gating values de-
rived from the softmax distribution. Formally, the MoE
layer can be expressed as:

xi =

E∑
i=1

(gi,jFFNi(xj)) + xj , (1)

gi,j =

{
si,j , si,j ∈ TopK({sk|1 ≤ k ≤ N},K),

0, otherwise,
(2)

si,j = Softmaxi(xjW
router
i ). (3)

Since tokens select their most suitable experts, this top-k
routing mechanism is also referred to as token-choice rout-
ing.

Recently, the MoE technique has been proven to be ef-
fective in language modeling [4, 11, 23]. With large model
capacity, the MoE-based model often reaches lower vali-
dation loss compared with those dense models. Deepseek
v3 [11] has scaled the MoE model into near 685B parame-
ters while only activating near 37B parameters in inference.
Many efforts have been made to improve the MoE training
[24, 26] and its effectiveness [16]. Nevertheless, the appli-
cation of MoE in image fusion-related architectures remains
scarce. To the best of our knowledge, the MoE-based DiT
improved in MMAIF represents the first attempt in the con-
text of the image fusion task.

1.2. All-in-one Image Restoration
Image restoration focuses on recovering a high-quality im-
age from its corrupted version, serving as a fundamental
and enduring problem in computer vision. It encompasses
various tasks, including image denoising, de-hazing, de-
blurring, etc. Despite the traditional approach of train-
ing individual restoration networks for specific degrada-
tions, recent works have shifted towards all-in-one methods,
which aim to train a single model capable of restoring mul-
tiple types of degradations simultaneously. Compared to
degradation-specific approaches, all-in-one restoration of-
fers superior model storage efficiency and practical appli-
cability. The primary challenge lies in employing a sin-
gle set of model parameters to address diverse degrada-
tion types while accurately restoring corresponding com-
ponents. To tackle this, AirNet [6] introduced contrastive
learning to capture discriminative degradation representa-
tions. PromptIR [19] enhanced multi-degradation han-
dling through vision prompts. [18] proposed an adap-
tive discriminative filter-based model for specific degrada-
tions to restore images with unknown degradations. IDR
adopted a two-stage ingredients-oriented restoration frame-
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work. More recently, CLIP-AWR [22], DA-CLIP [15],
and DINO-IR [9] harnessed pre-trained large-scale vision
models to achieve state-of-the-art performance in all-in-one
restoration. Perceive-IR [29] proposed a two-stage learn-
ing strategy, learning semantic visual prompts and harness-
ing CLIP [20] visual-text alignment to fulfill the restoration
task.

However, for degradations in image fusion, the need for
both a restoration network and a fusion network to generate
a clean image from degraded image pairs introduces sig-
nificant complexity to the inference pipeline. Particularly,
for CLIP-feature-based restoration methods, which addi-
tionally require loading the CLIP model during inference,
at least three large models coexist to fuse a single image,
further complicating the process.

2. Stochastic Path of Flow Matching and
Bridge Models

In this section, we discuss the stochasticity in the sampling
path for flow matching and other bridge models.

2.1. Stochastic Sampling of Flow Matching
Flow matching (FM) [10] and rectify flow [14] provides a
deterministic sampling path, or says ODE, represented as:

dZt = vθ(Zt, t)dt, (4)

where Zt is the flow hidden state at timestep t, starting from
Z0 ∼ N (0, Id) to the data distribution Z1 ∼ pdata. This
ODE path simplifies the generative process against diffu-
sion models that rely on SDE. Some recent works show
that the diffusion SDE can be converted to the marginal-
preserved ODE without retraining the flow model. Intu-
itively, the flow ODE can also be converted to SDE that pre-
serves the sample endpoints in order to obtain the stochastic
sampler in inference.

Let us review the flow matching forward path:

Zt = αtZ1 + βtZ0, (5)

when given that noise and data coupling (Z0, Z1). In com-
mon works, αt, βt are often set to t, 1− t. The velocity field
is given by:

vt = E[Żt|Z1 − Z0]. (6)

Formally, we can train a flow model to minimize the real
velocity:

Et,Z0,Z1
[∥Żt − vθ(Zt, t)∥2]. (7)

The marginal preserving law in FM demonstrates that: the
distribution of Zt on the ODE trajectory matches the distri-
bution on the interpolation at each time t. Thus, the final
output Z1 of the ODE can follow the same distribution of
pdata. However, in practice, when we solve the flow ODE,

the sampling error may accumulate over time. These er-
rors come from the model approximation and numerical
discretization, causing the drift between the final sampled
distribution and the true data distribution.

To solve the problem, we can introduce the Langevin dy-
namic to correct errors. Let ρt be the density of Zt, repre-
senting the true distribution at timestep t. In principle, we
can apply a short Langevin step to adjust the sampled tra-
jectory’s distribution towards ρt:

dZt,τ = σ2
t∇ρt(Zt,τ )dτ +

√
2σtdWτ , τ ≥ 0, (8)

where τ is the auxiliary time scale for Langevin dynamics.
In FM, the trajectory is already close to ρt at t, so, a single
step of Langevin dynamics can be sufficient to mitigate the
distributional drift, yielding a compositional SDE:

dZt = vθ(Zt, t)dt+σ2
t∇ log ρt(Zt)dt+

√
2σtdWt, Z̃0 = Z0.

(9)
The Langevin component acts as a negative feedback loop,
correcting distributional drift without bias when Z̃t and ρt
are well aligned. In Eq. (9), we need to estimate the score
∇ log ρt. In FM case, the score function can be directly ac-
cessed from velocity vt, without training an additional score
model. Specifically, when the coupling Z0 and Z1 is inde-
pendent, by Tweedie’s formula, we have:

∇ log ρt(z) = − 1

βt
E[Z0|Zt = z]. (10)

We have the estimated velocity in hand:

vt(z) = E[α̇tZ1 + β̇tZ0|Zt = z]. (11)

Using both equations, we can estimate the score function:

∇ log ρt(z) =
αtvt(z)− α̇tz

λtβt
, (12)

where λt = α̇tβt − αtβ̇t. As a result, the flow SDE is:

dZt = vt(Zt, t)dt+γ(αtvt(Zt, t)−α̇tZt)dt+
√
2λtβtγtdWt,

(13)
where σ2

t = λtβtγt. In FM setting, αt = t, βt = 1− t, we
have the score function:

∇ log ρt(z) =
tvt(z)− z

1− t
, (14)

causing the SDE:

dZt = vt(Zt, t)dt+ γt(tvt(z)− z)dt+
√
2γt(1− t)dWt.

(15)
By choosing different γt to introduce the different levels of
stochasticity in the path, we can reach the sampling Algo. 1
in the main text.
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2.2. Bridge Models
Recent works on image-to-image translation introduce an-
other model, bridge models, which directly interpolate two
distributions, rather than the one is pointed at the Gaussian
distribution. Some of them are based on Brownian bridge
[7] and Schödinger bridge (SB) [5]. We will briefly intro-
duce this kind of model.

SB is an entropy optimal transport model following the
forward and backward SDEs:

dXt = [ft(Xt)dt+ βt∇ logΨ(Xt, t)]dt+
√
βtdWt,

dXt = [ft(Xt)dt− βt∇ log Ψ̂(Xt, t)]dt+
√

βtdW̄t,

where X0 ∼ pA and X1 ∼ pB , and pA, pB can be
any two distinct distributions. The functions Ψ, Ψ̂ ∈
C2,1(Rd, [0, 1]) are energy potentials that solve the PDEs:{

∂Ψ(x,t)
∂t = −∇Ψ⊤f − 1

2β∆Ψ,
∂Ψ̂(x,t)

∂t = −∇ · (Ψ̂⊤f) + 1
2β∆Ψ̂,

(16)

s.t.Ψ(x, 0)Ψ̂(x, t) = pA(x),Ψ(x, 1)Ψ̂(x, 1) = pB(x).

I2SB [12] reformulates the SB drift as the score function:

dXt = ft(Xt)dt+
√

βtdWt, X0 ∼ Ψ̂(·, 0), (17)

dXt = ft(Xt)dt+
√

βtdW̄t, X1 ∼ Ψ(·, 1). (18)

By assuming the coupling is available (e.g., in image fu-
sion tasks), i.e., p(X0, X1) = pA(x0)pB(X1|X0), and set
the SDE drift ft := 0, one can obtain the DDPM-like [2]
forward process:

q(Xt|X0, X1) = N (Xt, µt(X0, X1),Σt). (19)

I2SB set the mean µt =
σ̄t

σ̄t+σt
X0 +

σt

σt+σ̄t
X0 and variance

Σt =
σ2
t σ̄

2
t

σ̄2
t+σ2

t
· I, where σ2

t :=
∫ t

0
βτdτ and σ̄2

t :=
∫ 1

t
βτdτ .

Akin to flow matching, we can still learn a velocity-based
model:

L = Et,X0,X1

[∥∥∥∥vθ(Xt, t)−
Xt −X0

σt

∥∥∥∥2
2

]
. (20)

When sampling, the posterior p(Xt−τ |Xv
0 , Xt) can be ob-

tained using Eq. (19). Thus, stochasticity is naturally intro-
duced into the sampling process and relaxing the pA to be
any distribution at the same time.

3. Dataset Collection Details
In the dataset collection stage, SwinFusion [17] and DeFuse
[8] are used to generate ground truth (GT) for each clean im-
age pair, and the datasets are split into training and testing
sets, with the train/test split ratios detailed in Tab. 1. De-
graded image pairs are generated separately for the training

Table 1. Training and testing numbers of pairs on each dataset.

Datasets LLVIP M3FD MSRS RealMFF MFF-WHU SICE MEFB
Train 12025 3900 1083 639 92 288 60
Test 3463 300 361 71 30 72 40

Table 2. Configurations of heavy and mild degradations.

Heavy Degradation Configurations
Low Exposure Brightness: [0.3, 0.6]
Gaussian Blur Kernel Size: [5, 21], Sigma: [1.0, 2.0]
Motion Blur Kernel Size: [5, 21], Angle: 35.0, Direction: 0.5
Gaussian Noise Mean: 0.0, Std: 0.0588 (15/255)
Rain Rain mode (light and heavy), Apply Blur (Ksize: [5, 17],

Sigma: [1.0, 2.0]), Low-light: [0.8, 1.0]
Haze Haze Distance: [3, 15], IR Blur (Ksize: [5, 17], Sigma:

[1.0, 2.0])
Snow Snow Mode: [’Combine Snow’, ’Small Snow’, ’Mid

Snow’]
JPEG Compression JPEG Quality: [10, 30]
Low Contrast Contrast: [0.3, 0.8]
Downsample Down Scale: [2.0, 3.5]
Strip IR Direction: vertical and horizontal
Mild Degradation Configurations
Low Exposure Brightness: [0.5, 0.8]
Gaussian Blur Kernel Size: [5, 9, Sigma: [1.0, 1.5]
Motion Blur Kernel Size: [5, 9], Angle: 35.0, Direction: 0.5
Gaussian Noise Mean: 0.0, Std: 0.0392 (10/255)
Rain Rain mode: Light, Blur (Ksize: [5, 9], Sigma: [1.0, 1.5]),

Low-light[0.85, 1.0]
Haze Haze Distance: [5, 20], IR Blur (Ksize: [5, 9], Sigma:

[1.0, 1.5])
Snow Snow Mode: [’Small Snow’, ’Middle Snow’]
JPEG Compression JPEG Quality: [30, 60]
Low Contrast Contrast: [0.5, 0.8]
Downsample Down Scale: [1.4, 2.0]
Strip IR Direction: vertical and horizontal

and testing sets. The validation set is then derived from the
generated degraded training set, using a fixed proportion.
To create degraded image pairs, we introduce n = 1, 2, 3
levels of degradation based on the description in Sect. 3.1
of the main text. We apply a heavy degradation when only
one type of degradation is present. For n = 2 or 3, we opt
for milder degradations; severe compositional degradations
can result in unrealistic information loss. The configura-
tions of degradation are provided in Tab. 2.

Furthermore, due to the paired nature of our images,
careful consideration must be given to degradation con-
sistency and modality-specific characteristics. Specifically,
for the VIF task, the infrared modality may exhibit blur-
ring artifacts under rainy, hazy, or snowy weather condi-
tions. For MEF and MFF tasks, motion blur should main-
tain consistent direction and intensity across the image pair.
Rainy weather may also induce low-light conditions and ad-
ditional blurring. The application of haze should simulate
depth-dependent effects, with haze density increasing with
distance from the camera lens.

We defined several aspect ratios for images: 1:1, 3:4,
4:3, 16:9, and 9:16, to facilitate model adaptation across im-
age pairs with varying resolutions. For the LLVIP, M3FD,
MSRS, SICE, and RealMFF datasets, for the training stage,
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Table 3. Quantitative metrics of MEFB and MFF-WHU task in degraded MEF and MFF tasks. ERN denotes the existing restoration
network. Reg and FM mean regression and flow matching, respectively. The best and second-best results are colored in red and blue.

Methods MEFB MEF Dataset Methods MFF-WHU MFF Dataset
Qcv QA/BF BRISQUE MUSIQ CLIPIQA Qcv QA/BF BRISQUE MUSIQ CLIPIQA

ERN+U2Fusion [27] 515.189 0.164 69.806 23.216 0.174 ERN+U2Fusion[27] 146.070 0.398 34.325 48.858 0.323
ERN+DeFuse [8] 347.178 0.351 36.510 46.131 0.315 ERN+DeFuse [8] 165.911 0.381 38.286 44.923 0.309

ERN+HoLoCo [13] 347.178 0.351 36.510 46.131 0.315 ERN+ZMFF [3] 254.337 0.389 42.414 49.859 0.364
ERN+TC-MoA [30] 403.580 0.315 42.038 35.792 0.288 ERN+TC-MoA [30] 306.029 0.264 55.497 22.367 0.156
ERN+PSLPT [25] 438.174 0.409 31.211 51.945 0.341 ERN+PSLPT [25] 175.625 0.426 28.780 57.716 0.403

Ours (Reg) 368.647 0.412 29.313 56.908 0.362 Ours (Reg) 105.342 0.415 24.483 64.669 0.411
Ours (FM) 366.802 0.385 21.753 62.971 0.362 Ours (FM) 107.638 0.416 25.401 64.947 0.446

Table 4. Results of total n degradations in LLVIP dataset. “R+F”
denotes degradation-level all-in-one DA-CLIP + EMMA pipeline.
“w/” and “w/o” mean “with” and “without”, respectively. “lang.”
is the language guidance.

Config LLVIP Dataset
VIF QA/BF BRISQUE MUSIQ CLIPIQA

n = 1 R+F 0.496 0.370 28.647 52.015 0.286
n = 1 w/o lang. 0.589 0.379 27.826 52.978 0.321
n = 1 w/ lang. 0.604 0.384 27.535 53.277 0.330
n = 2 R+F 0.450 0.346 33.256 48.589 0.264
n = 2 w/o lang. 0.584 0.370 29.037 50.226 0.318
n = 2 w/ lang. 0.601 0.380 28.346 51.807 0.326
n = 3 R+F 0.431 0.325 35.761 44.285 0.247
n = 3 w/o lang. 0.562 0.351 32.079 46.792 0.304
n = 3 w/ lang. 0.584 0.366 30.432 48.691 0.317

we synthesized 2000 clean/degradation/prompt/GT pairs
under each aspect ratio and degradation degree. For MFF-
WHU and MEFB datasets, we generated 500 and 300 pairs,
respectively. For the validation stage, we synthesized 300
pairs for each dataset under each aspect ratio and degrada-
tion degree. In total, we synthesized 157500 pairs of data
for training, 31500 pairs for validation, and 6300 pairs for
testing.

4. Degraded Dataset Comparisons with TextIF
EMS Dataset

In TextIF [28], a degraded/clean/prompt dataset named
EMS was proposed. In comparison, the dataset we propose
differs in the following aspects:
1) Our dataset incorporates a greater variety of degrada-

tions, including noise, low lighting, JPEG compression
artifacts, motion blur, rain, snow, haze, IR strips, down-
sampling, low contrast, and Gaussian blur. In contrast,
the EMS dataset is limited to only a few degradation
strategies and does not align well with real-world sce-
narios. For instance, the haze effect applied in EMS is
centered, which results in models trained on it having
poor robustness when handling real-world degradations
for fusion tasks;

2) Our dataset not only includes data for the VIF task but
also encompasses fusion degradation data for MEF and

MFF tasks. In contrast, the EMS dataset only contains
data for the VIF task, making it challenging to train an
all-in-one model that generalizes across multiple fusion
tasks;

3) Our dataset is significantly larger than the EMS dataset.
While the EMS dataset contains only thousands of
degradation pairs, our dataset includes nearly 160,000
pairs with diverse degradation types, varying degrada-
tion levels, and different image aspect ratios. This scale
enables the training of larger and more complex models;

4) Additionally, our dataset provides image latents encoded
by the Cosmos tokenizer [1] to support the training of
Transformer networks that operate in the latent space,
enabling faster inference. It also supports the training of
models in the pixel space.

5. Additional Results
In this section, we provide more quantitative and visual
comparisons to demonstrate the effectiveness of MMAIF:
it supports multiple degradations, various fusion tasks, and
fusion tasks involving multiple simultaneous degradations
within a single image pair. Moreover, it outperforms pre-
vious SOTA restoration+fusion pipelines as well as recent
all-in-one methods in terms of degradation fusion perfor-
mance.

5.1. Additional MEF and MFF Results
In this section, we provide the degraded fusion performance
of MEF MEFB and MFF MFF-WHU datasets in Tab. 3.
As evidenced by the results, our MMAIF significantly out-
performs restoration+fusion pipelines across nearly every
metric, demonstrating the effectiveness of our proposed
method.

5.2. Performance without Language Guidance
Language guidance plays a prominent role in our MMAIF.
To verify its effectiveness, during training, we randomly
drop the encoded prompt feature and replace it with a zero
tensor, which allows us to avoid manually estimating the
degradation type during testing. This approach results in a
certain degree of performance loss but enables MMAIF to
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Figure 1. More visual results of the proposed MMAIF and recent SOTA fusion methods incorporated with existing restoration methods
(“ERN” in this figure) on the VIF degraded image fusion task. “N/A” means that no degradation-oriented restoration method is involved.

perform degradation image fusion more flexibly. The per-
formance without language guidance is shown in Tab. 4.
Note that, even without language guidance, MMAIF still
performs better than previous methods, demonstrating the
effectiveness of our framework.

5.3. More Visual Results

We provide additional visual comparisons in Figs. 1, 2,
and 3 for VIF, MEF, and MFF tasks, as well as more

examples of combined degradation (i.e., n ∈ {2, 3}) in
Fig. 4 of MMAIF’s degraded image fusion results. The re-
sults demonstrate that MMAIF outperforms other restora-
tion+fusion pipelines and recent all-in-one methods in de-
graded image fusion, producing clearer and more realis-
tic fused images with superior adaptability and robustness
when handling multiple co-existing degradations. It is still
worth noting that all samples are processed by a single, all-
in-one model across various image fusion tasks and differ-
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Figure 2. More visual results of the proposed MMAIF and recent SOTA fusion methods incorporated with existing restoration methods
(“ERN” in this figure) on the MFF degraded image fusion task. “N/A” means that no degradation-oriented restoration method is involved.

ent types of degradation.
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