Supplementary Material of
MotionCtrl: A Real-time Controllable Vision-Language-Motion Model

In this appendix, we provide additional details on our
experimental setups in Section [, including the datasets
used for each benchmark and our adopted motion feature,
HuMo263. Next, in Section 2, we elaborate on the de-
sign and implementation of our proposed part-level residual
quantization (PRQ). Finally, in Section 3, we present further
details and analysis of the HuMo100M dataset.

1. Experimental Setup

This section describes the datasets and motion features used
in the experimental setup for evaluating the MotionCtrl
model.

1.1. Datasets

To comprehensively evaluate MotionCtrl’s performance on

various motion-related tasks, we employ the following

datasets:

¢ Text-to-Motion: We use the HumanML3D [5] and KIT-
ML [13] datasets. HumanML3D includes 14,616 motion
sequences with 44,970 corresponding text descriptions,
and KIT-ML offers 3,911 motion sequences with 6,278
text descriptions. Both datasets are split into training
(80%), validation (5%), and test sets (15%). In addition,
we sample from HuMo100M to construct a new test set,
HuMo-t2m, containing 200K samples.

¢ Instruct-to-Motion: HuMo-I2M. To construct this
benchmark, we sample 1 million high-quality motion-
instruction pairs from the HuMo100M dataset and divide
them into training (80%), validation (5%), and test (15%)
splits.

¢ Instruct-to-Unseen: HuMo-unseen. To evaluate the
model’s generalization ability on unseen motion data,
we construct the HuMo-unseen dataset, which con-
tains 200,000 new motion sequences sampled from
HuMo100M that do not appear in any training data.

¢ Instruct-to-PartMotion: HuMo-I2PM. We use the
same training data as HuMo-12M for this benchmark. For
evaluation, we carefully curate 200,000 instances with
detailed part-level actions, allocating 150,000 for testing
and 50,000 for validation.

¢ Instruct-to-LongMotion: HuMo-I2LM. As demon-
strated in the main paper, we concatenate individual

motion sequences to create longer sequences. For this
task, we sample 500,000 such sequences to formulate the
benchmark, dividing them into training, validation, and
test splits using the same ratios as HuMo-12M.

* Motion Prediction and In-between: We use the
AMASS [11] and 3DPW [17] datasets. These datasets
provide annotations based on the SMPL-X [I2] or
SMPL [10] formats. We extract the corresponding 3D
keypoints using the provided beta and theta parameters.
Following Zhang et al. [21], we focus on the motion pre-
diction of six body parts (spine, left arm, right arm, left
leg, right leg, and head), as the motion prediction task in
the 3DPW dataset does not consider global translation.
Facial expressions are not included in our analysis. Fur-
thermore, we construct HuMo-MP on the HuMo100M
dataset for evaluating the motion prediction task.

* Action-to-Motion: We evaluate the model’s performance
on this task on the UESTC [7] dataset, consistent with
Zhang et al. [21].

* Motion Reconstruction: We evaluate motion recon-
struction using HumanML3D [5], MotionX [8], and
HuMo100M.

¢ Motion-to-Text: We evaluate on HumanML3D [5].

1.2. Motion Feature HuMo0263

HM3D263-Format [5] is a widely adopted feature represen-
tation method in recent motion generation works. It in-
cludes relative joint positions, velocities, 6D rotations of
key joints, and foot contact information. However, a key
issue with HM3D-Format is that its rotation information is
computed from joint position data via inverse kinematics
(IK). This indirect computation not only loses original rota-
tional details but also introduces significant computational
complexity and latency due to the IK solving process, which
is detrimental to real-time applications.

To address these issues, we propose and adopt the
HuMo0263 motion features. HuMo263 is based on the
SMPL model [10], directly using SMPL parameters to rep-
resent human pose. Specifically, HuM0263 includes rela-
tive 6D rotations of key joints (126 dimensions), root node
parameters (4 dimensions, including 1 dimension for angu-
lar velocity of rotation, 2 dimensions for xz-velocity, and



1 dimension for y-height), redundant joint position infor-
mation derived from the SMPL model’s forward kinemat-
ics (63 dimensions), and foot contact information (4 dimen-
sions). Unlike HM3D-Format, HuMo0263 directly preserves
the rotation information output by the SMPL model, avoid-
ing information loss and computational delay caused by IK
calculations.

2. Part-level Residual Quantization

In PRQ, we divide the joints of the whole body into 5 parts,

including:

e Left Hand: spine;, spines, spines, left collar, left shoul-
der, left elbow, left wrist

* Right Hand: spine;, spines, spines, right collar, right
shoulder, right elbow, right wrist

e Left Leg: spine;, spines, spines, left hip, left knee, left
ankle, left foot

* Right Leg: spine;, spines, spines, right hip, right knee,
right ankle, right foot

» Torso: spine;, spines, spines, neck, left collar, right col-
lar, head
The pelvis, spineq, spines, spines are shared across all

parts, as they remain relatively stable during human motion.

Each joint is represented by relative 6D rotations and redun-

dant 3D positions, resulting in a dimensionality of 63+8 per

part, including 4D root node and 4D foot contact informa-

tion. When aggregating part features into motion features,

we average the shared joints.

3. The HuMo0100M Dataset

In this section, we detail our large-scale multimodal hu-
man motion dataset, HuiMo100M. HuMo100M not only in-
tegrates existing publicly available human motion datasets
but also significantly expands the scale by extracting a large
number of motion sequences from web videos using the
WHAM[15].

3.1. Motion Data Collection

Motion Data Collection. We start by collecting over 20
million videos from publicly available datasets and online
platforms, such as YouTube. To ensure motion quality,
we first use a keyword-based filtering approach to discard
videos whose associated textual metadata lacks human-
related terms, such as people, human, person, man, and
woman.

* Video Boundary Detection: Although the first-stage fil-
tering ensures the presence of humans in the video, We
observe that many segments in these videos lack human
presence. To further improve the quality of the dataset,
we employ YOLO[14] to track every individual through-
out the video to obtain a precise human-related segments.
Then, we conduct video clip segmentation. To ensure the

integrity of the trajectory, we conduct clip segmentation
utilizing the tracking results from YOLO.

* Occlusion and Blur Filtering: Occlusion and motion
blur are common challenges in human-related videos. To
mitigate these issues, we develop the following quality
assessment framework to enhance the reliability of our
dataset. First, we apply a pre-trained 2D keypoint de-
tector to extract skeleton key points for each human and
filter out detection results with low confidence. Next, we
utilize the number of detected high-quality key points as
the primary criterion for assessing potential occlusions.
Specifically, a motion sequence is considered to contain
significant occlusion if the number of visible key points
is below a minimum threshold. Second, we implement a
quality control method based on sequence duration. Short
human motion sequences contain insufficient temporal in-
formation and often exhibit reduced estimation accuracy.
Therefore, we have implemented a simple but effective
sequence length filtering mechanism that removes motion
sequences containing few frames to ensure data quality.

Motion Description Generation. We utilize Gemini-1.5-
pro[ 16] with a carefully designed prompt and PoseScript[4]
to generate hierarchical motion descriptions including: 1)
body-level description, which provides a high-level and
overall body movements description in a short sentence; 2)
part-level description, which provides a description to de-
scribe the movements of upper body and lower body re-
spectively. The upper body descriptions capture motions
involving the arms and torso, while the lower body texts
focus on the movement of the legs and feet; 3) rule-base
description, which describes the relative position between
different joints by utilizing several posecodes to extract se-
mantic pose information, such as ‘the left hand is below the
right hand’.

3.2. Statistic Analysis of Data and Word Distribu-
tion

Data Distribution. Figure | shows the distribution of mo-
tion length across different subsets of HuMo100M. We can
observe that HuMo100M integrates motion sequences from
existing datasets (such as Motion-X[8], 3DPW[17], and
MSCOCO[9]). Notably, Posetrack[!] contain the lowest
average number of frames (16.12 frames), indicating a fo-
cus on short motion sequences. In contrast, PROX[6] and
BEHAVE][3] contain high average frame numbers (994.19
frames and 975.78 frames, respectively), indicating that the
motion sequences in the dataset are diverse in length. Figure
shows the distribution of the number of motions in differ-
ent subsets of HuMo100M (logarithmic scale) and demon-
strates the difference in the number of motion instances
across subsets, ranging from 27 motions in PROX[6] to
2,376,376 motions in Webvid[2].
Word Distribution. To further investigate the annotated
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Figure 3. Word cloud of rule-base motion descriptions in HuMo100M
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Please generate a motion sequence,
A person runs forward, then stops and bends down,
‘gets back up, and runs forward again.

‘ﬁf
f

Arperson proceeds forward , then turns
and retraces along the same path.

Can you generate a motion sequence that aligns the following text?
around

As an agent, please generate a motlon sequence
Show me how to perform putting on a jacket, that aligne the text.

M

‘The man 1s initially standing upright, then bends over
to pick up a basketball and returns to a standing position.
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Figure 6. Visualization results generated by MotionCtrl given the random instruction.
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Figure 7. Visualization results generated by MotionCtrl given the long-term instruction.

A person punches with their left hand

before he does a clockwise spin. Aipersgy NEEe it Tight Hand’

3

Aperson wavef his left arm. Someone is working out the right arm.

Figure 8. Visualization results generated by MotionCtrl given the part-level instruction.

motion text within HuMo100M, we generate word clouds
from the entire text corpus to visualize its linguistic pat-
terns. Specifically, we compute three distinct word clouds
for rule-based text, part-level text, and body-level text re-
spectively. Figure 3 reveals that the rule-based text empha-
sizes semantic relationships between joints, such as posi-
tional constraints. In contrast, Figure 5 demonstrates that
part-level descriptions focus on detailed movements of spe-
cific body parts, including the torso, shoulders, legs, and
arms. Figure 4 highlights that body-level text predomi-
nantly captures high-level human activities, such as stand-
ing, sitting, and walking. This hierarchical structure of the
text corpus, spanning rule-base, part-level, and body-level
annotations, facilitates enhanced alignment in VLMMs.

3.3. Instruction Generation

To fully leverage the potential of the HuMo100M dataset
and support diverse downstream tasks (such as part-level
motion control and vision-based motion understanding), we
generate rich and high-quality instructions for the dataset.
These instructions not only include traditional whole-body
motion descriptions but also incorporate fine-grained de-
scriptions for individual body parts. We primarily generate
these instructions in two ways:
* Generation based on Large Multimodal Models
(LMMs): We design detailed prompt templates (as

shown in Figure 9) and utilize powerful LMMs, such as
Gemini-1.5-pro [16], to extract part-level motion descrip-
tions from videos. This approach enables the generation
of semantically rich descriptions in natural language.

* Rule-based Generation (PoseScript): In addition to the
descriptions generated by LMMs, we also utilize Pos-
eScript [4] and posecodes to extract semantic pose infor-
mation. This allows us to generate instructions that de-
scribe the relative positions between different joints, such
as “’the left hand is below the right hand.”

3.4. Visualization Examples

Figures 0, 7, and & collectively present a series of motion
visualization results generated by MotionCtrl from random
instructions, initial pose, long-term text command, and part-
level commands respectively. These visualizations demon-
strate that MotionCtrl can effectively handle and process in-
structions in a variety of different formats, showcasing its
versatility and robustness in motion generation tasks.

3.5. Long-term Motion Concatenation

Most existing human motion datasets are characterized by
short-duration motion sequences, undermining the model’s
ability to generate long-sequence motions from textual de-
scriptions. To address this critical gap, we introduce two
motion concatenation methods, integrating shorter motion



Begin by providing a general overview of the person's current action (e.g., walking, sitting,
interacting) within the BBOX area. Then, proceed with a detailed breakdown, focusing
exclusively on the physical movements and positions of the person within the BBOX. For the
upper body, describe the position and movement of the arms, hands, shoulders, and torso. For the
lower body, detail the position and movement of the legs, feet. and overall balance. Ensure the
description strictly covers physical actions without mentioning facial expressions, clothing, or
environmental elements outside the BBOX

Example:

The person is standing still, observing something in front of them.

and the chest open. The torso is upright, with minimal movement, indicating a calm,
neutral stance.

5
|
|
|
|
|
|
|
|
!
|
|
|
® Upperbody: Their arms hang relaxed by their sides, with the shoulders slightly back :
|
|
® Lower body: Both feet are planted firmly on the ground, shoulder-width apart. The :
|
|
|
|
|
|
|
|
|

The person is repeatedly running in place, using a pole for support.

|
|
|
**Upper body:** |
* #* Arms:** Both arms alternate in a forward and backward swinging motion, staying |
close to the body. l
* **Hands:** One hand briefly grips the pole for support with each step, while the |
other hand remains loosely fisted. |
* *%*Shoulders:** Shoulders remain relaxed, moving slightly with the arm swings. l
* **Torso:** The torso remains upright throughout the exercise, with minimal twisting. |
|
|
1
|
|
|
|
|
|
1
|

**Lower body:**

* **Legs** Legs alternate lifting from the knees in a running motion, maintaining a
quick pace.

* **Feet:** Feet rise just above the ground with each step, landing softly on the balls of
the feet.

* **Balance:** The person maintains balance while using the pole for occasional
support.

e

Figure 9. The Prompt template to generate part-level motion de-
scription in videos based on powerful large multimodal models
(LMMs), such as Gemini-1.5-pro and GPT-40-mini. For each
sample in HuMo100M, we provide “body-level” (UP) and “part-
level” (DOWN) labels to distinguish between whole-body and par-
tial motion descriptions.

sequences into longer, consistent motion sequence.
Interpolation-based. To enable seamless motion con-
catenation, we implement a three-stage alignment process.
First, we perform orientation alignment between the two
motion sequences to ensure consistent directional coher-
ence. Subsequently, we conduct global coordinate align-
ment through spatial translation of the motion sequences.
Finally, we establish a smooth transition by selecting a
standing pose as the reference pose and applying spherical
linear interpolation (Slerp) between the motion sequences
and the reference pose. This approach guarantees a natural
transition where the character returns to a standard standing
posture after completing the first motion sequence, main-
taining continuity and physical plausibility throughout the
concatenation process.

Learning-based. We introduce an in-between motion pre-
diction model designed to generate smooth transitions be-
tween two motion sequences. Our approach builds upon
a pre-trained text-to-motion model, which is fine-tuned
specifically for this task. During training, we employ a
masking strategy that masks approximately 50% of the mo-

Method |  specialized area  |FID | R@1 1 R@3 1+ MMDist |
MotionDiffuse [20] partial control 0.630 0.491 0.782 3.113
ParCo [22] partial control 0.109 0.515 0.801 2.927
Fg-T2M++[ 18] fine-grained text control|0.089 0.513 0.801 2.925

MotionCtrl-PRQ4 ‘ - ‘0.056 0.535 0.821  2.865

Table 1. Effectiveness of multi-task motion training on HuMo-t2m
testbed using different configuration.

tion sequence, enabling the model to obtain robust motion
completion capability. During inference, the model is used
to concatenate two motion sequences through a two-step
process. First, an interpolation-based method generates ini-
tial key frames to bridge the sequences. These interpolated
frames are then treated as a masked motion sequence and
fed into the fine-tuned in-between model, which refines and
completes the transition. This hybrid framework leverages
the strengths of both data-driven and rule-based methods,
ensuring that the generated motion transitions are not only
smooth but also contextually consistent with the input se-
quences.

4. Additional Experimental Analysis

Controllability Experiments. MotionCtrl tackles the chal-
lenge of part-specific motion control by representing the
body with five part-level tokens instead of a single token.
This design enables pretraining on part-level motion-text
pairs and selective decoding of specific body parts during
inference. While prior works have also explored partial
body control or pose conditioning in isolation [18, 19, 22],
our method demonstrates superior controllability. We eval-
uate MotionCtrl against recent part-specific, fine-grained
control approaches on the HumanML3D dataset, where
our model outperforms existing methods, as shown in Ta-
ble 1. To further quantify control accuracy, we introduce
human part awareness as a controllability metric. Follow-
ing ParCo [22], we conduct left-right exchange tests on 50
sentences. Our method achieves a 76% success rate, signif-
icantly surpassing ParCo (64%) and T2M (46%), demon-
strating stronger part-aware motion generation.

Inference Speed Comparison. We benchmark our method
against Momask, a large-scale motion model. While both
approaches generate initial motions in real time, our method
incurs a slightly longer latency due to its > 3x token output
for part-level control and a larger model size. However, Mo-
mask’s HM263 feature cannot produce directly applicable
motions, as they require time-consuming inverse kinematics
(IK) post-processing. In contrast, our proposed HuMo0263
feature eliminates this bottleneck, enabling real-time, part-
level controllable motion generation without additional re-
finement. Thus, compared to Momask, we achieve real-
time performance, direct usability, and fine-grained part-
level control simultaneously.



Motion Tokenizer Selection. We analyze the trade-offs
in motion tokenizer selection. While PRQ adopted by our
MotionCtrl achieves superior performance on R@# and
MMDist compared to RQ used by Momask, it exhibits
higher FID scores, which we attribute to its fewer quan-
tized layers, which can be seen in Table 1 in the main paper
(Row 4 vs. Row 6). In addition, the Table 4 of main paper
demonstrates that FID is highly dependent on layer count:
with equal layers, PRQ achieves competitive reconstruction
FID. However, increasing layers introduces more motion to-
kens, complicating LLM-based decoding. To balance these
factors, we select PRQy, preserving the LLM’s advantages
in tasks like I2M while maintaining efficient motion repre-
sentation.
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