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Supplementary Material

This supplementary material provides implementation
details of our method in Sec. 6, real-world data collection
details in Sec. 7, scene normalization details in Sec. 8, and
presents a visualization of the full BRDF map in Fig. 14.

6. Implementation Details

6.1. Network Architecture

As shown in Fig. 2, our forward rendering pipeline com-
prises three MLPs: the spatial MLP, the BRDF MLP, and
the shadow MLP. We detail each MLP’s architecture below
and visualize them in Fig. 13.

Spatial MLP. The spatial MLP takes as input the hash-
encoded point features concatenated with the point’s coor-
dinates and outputs a 64-dimensional vector. The first entry
of the output vector represents the signed distance g, while
the remaining entries serve as the BRDF latent vector b.
The spatial MLP consists of one hidden layer with 64 chan-
nels using the softplus activation. The output layer does not
employ any activation function.

Regarding hash encoding, we set the base resolution to
32 and use 14 levels with 2 entries per level, yielding a 28-
dimensional feature vector.

BRDF MLP. The BRDF MLP inputs the BRDF latent
vector b(x) and the angularly encoded normal-view-light
directions, producing a 3-dimensional output accounting for
RGB channels. It comprises two hidden layers, each with
64 channels and ReLU activations. The output layer also
employs a ReLU activation to ensure non-negative BRDF
values.

Shadow MLP. The shadow MLP takes as input the sur-
face point’s latent vector b(x0), the viewing direction v,
and the volume-rendered shadow value s. We apply a third-
degree spherical harmonics encoding to the viewing direc-
tion. The shadow MLP consists of two hidden layers with
64 channels and ReLU activations. The output layer uses a
sigmoid activation to ensure the output shadow factors are
within the range [0, 1].

6.2. Loss Functions

As described in Sec. 3.3, the loss function comprises three
terms: color loss, mask loss, and Eikonal loss. The color
loss is defined in Eq. (16) of the main paper. Here, we pro-
vide details for the remaining two terms.

Mask loss. Given a batch of sampled pixels P from in-
put images, we render the accumulated opacities m(p) and
compare them against the input binary mask values m̂(p)
using the binary cross-entropy (BCE) loss:

Lmask =
X

p2P
BCE (m(p), m̂(p)) . (17)

Eikonal loss. Along the viewing rays cast from the cam-
era centers, we sample a set of points X via ray marching.
The Eikonal loss encourages the gradient norms of the SDF
at all sample points to be 1:

LEikonal =
X

x2X
(krg(x)k2 � 1)2 . (18)

Since we only sample points near the surface, the Eikonal
loss enforces a unit spatial gradient only in the vicinity of
the zero level set of the SDF.

6.3. Optimization

We implement our method using the PyTorch Lightning
framework. Tiny-cuda-nn [36] and NerfAcc [28] are used
to accelerate ray marching and volume rendering. Train-
ing takes about 20min per DiLiGenT-MV object and about
100min per self-collected object on an NVIDIA A100
GPU.

All terms in the loss function are weighted equally. We
use the AdamW optimizer [33] with an initial learning
rate of 1 ⇥ 10�2 for the parameters of the spatial MLP
and BRDF MLP and 1 ⇥ 10�3 for the remaining param-
eters. All parameters are jointly trained for 20,000 steps on
DiLiGenT-MV [27] objects and 100,000 steps on our self-
collected data. In each step, we randomly sample 4,096 rays
for rendering.

Using NerfAcc [28], we update an occupancy grid every
16 steps during optimization to skip ray marching in empty
regions (grids with occupancy values within a tiny thresh-
old). For shadow ray marching, we set tnear = 1 ⇥ 10�2

and tfar = 0.5, and uniformly sample 64 points along the
shadow ray segment.

6.4. Evaluation Metrics

L2 Chamfer Distance (CD). CD quantifies the similarity
between two sets of points by calculating the average clos-
est point distance from each point in one set to the other set.
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Figure 13. Our MLP architectures.

Given two point sets �1 and �2, CD is defined as

CD =
1

|�1|

X

x12�1

min
x22�2

kx1 � x2k2

+
1

|�2|

X

x22�2

min
x12�1

kx2 � x1k2.

(19)

Here, k·k2 denotes the Euclidean distance, and |·| represents
the cardinality of the point set. In this work, we measure
Chamfer Distance in millimeters (mm). A lower Cham-
fer Distance indicates a greater similarity between the two
point sets.

Following SuperNormal [8], we compute the Chamfer
Distance for points that are visible from the input views. To
this end, we cast rays for pixels inside the foreground mask
from all captured views and find their first intersection with
the reconstructed or GT meshes.

Mean Angular Error (MAE). MAE measures the aver-
age angular difference between corresponding unit vectors.
Given two sets of unit vectors {ni} and {n̂i}, the mean an-
gular error is defined as

MAE =
1

N

NX

i=1

arccos
�
n>
i n̂i

�
. (20)

In this work, MAE is measured in degrees. A lower MAE
indicates a smaller average angular discrepancy between the
vectors, signifying higher accuracy in normal or light direc-
tion estimation.

Since normal maps are rendered in multiple views, we
apply Eq. (20) to normal vectors collected from all rendered
views within the foreground masks. Because rotation trans-
formations preserve angles, computing MAE using either
world-space or camera-space normal maps yields the same
value.

Peak Signal-to-Noise Ratio (PSNR). PSNR measures
the similarity between the rendered images and the cap-
tured images. It is defined based on the mean squared error

(MSE) as:

PSNR = 10 log10

✓
MAX2

MSE

◆
. (21)

Here, MAX is the maximum possible pixel value of the im-
age (1 in our case), and MSE is the mean squared error be-
tween the rendered and captured images. Higher PSNR val-
ues indicate better image quality.

Scale-invariant Mean Squared Error (SI-MSE). As the
light intensities can only be estimated up to a scale, we fol-
low previous work [26] to use the scale-invariant relative
error defined as:

SI-MSE =
1

M

MX

j=1

|seêj � ej |

ej
, (22)

where êj and ej denote the estimated and ground truth
light intensities of the j-th light, respectively. The scale
factor se is computed by solving the least squares problem:

se = argmin
se

MX

j=1

(seêj � ej)
2
. (23)

A lower scale-invariant relative error indicates a more
accurate estimation of the light intensities.

7. Real-World Data Collection

7.1. Capture Setup Details

As shown in Fig. 10, we prepare six strobe lights that emit
point flashlights and a Sony ILCE-7RM5 camera equipped
with a telephoto zoom lens. Both the camera and the strobes
are mounted on tripods to ensure that each light remains
fixed relative to the camera. Since our method does not re-
quire a light to be static to other lights, preparing M light
sources is equivalent to repositioning a single source M �1
times during capture.

Following the setup of DiLiGenT-MV [27], we place the
stobes approximately 1m away from centimeter-scale ob-
jects, so that the point flashlight can be safely approximated



as directional. To ensure sufficient image coverage, we ad-
just the focal length between 70mm and 100mm depend-
ing on the object size. The aperture is set between F/11 and
F/22 to achieve a large depth of field, ensuring the entire
object remains in focus. The ISO is set between 100 and
200 to minimize sensor noise.

Capture is conducted indoors. While a darkroom is ideal
for OLAT acquisition, it is not a strict requirement as long
as the flash emits a burst of light that is momentarily much
stronger than the ambient illumination. Under such lighting
conditions, a short camera exposure (e.g., 1/200 sec) effec-
tively reduces the influence of ambient light to a negligible
level.

Figure 15 visualizes the distribution of camera view-
points. A motorized turntable rotates the object in 15�

increments, yielding 24 uniformly distributed multi-view
OLAT images per strobe light. Each time we switch to a
different light, we adjust the camera height and elevation
angles to introduce more viewpoint variations. In total, we
capture 144 OLAT images per object (6L24V) at a reso-
lution of 9504 ⇥ 6336. Under our setting, the real-world
resolution of each pixel is approximately 0.04mm.

7.2. Image Preprocessing

The DSLR camera produces a pair of raw and JPEG images
per exposure. The raw images are unprocessed and directly
fed into our algorithm. For camera calibration, we use the
JPEG images and employ RealityCapture [1] due to its effi-
ciency and robustness. This yields a single 3 ⇥ 4 world-to-
image projection matrix per view, encoding both the world-
to-camera transformation and the perspective camera intrin-
sics.

Multi-view foreground masks are generated using
SAM2 [42], which supports efficient and automated cross-
view mask propagation. With a few mouse clicks on a sin-
gle image, SAM2 [42] segments the corresponding mask
and propagates it to other views in seconds. To facilitate
more reliable foreground segmentation, we apply gamma
correction to the JPEG images to enhance contrast between
the foreground object and the background.

Finally, given the camera parameters and multi-view
foreground masks, we perform scene normalization such
that the target object is enclosed within a unit sphere. This
process is detailed in the next section.

8. Scene Normalization

Scene normalization applies a global scaling and translation
to world coordinates such that the target object is bounded
within a unit sphere [51]. This normalization facilitates the
training of the neural SDF and is conducted before recon-
struction. For clarity, we refer to the normalized world co-

ordinates as the object coordinates, where the unit sphere
is centered at the origin. In the following, Sec. 8.1 describes

the coordinate system transformations involved in our ren-
dering pipeline, and Sec. 8.2 provides a robust scene nor-
malization method based on camera parameters and multi-
view foreground masks.

8.1. Coordinate System Transformations

We define the object coordinates to differ from the world
coordinates by an isotropic scale and translation without ro-
tational motion. Specifically, for a point xO

2 R3 in ob-
ject coordinates, its world coordinates is given by xW =
sxO + d, where s 2 R+ is the object-to-world scale and
d 2 R3 is the object-to-world translation3. In homogenous
coordinates, the object-to-world transformation TO2W is

x̃W =


sI d
0> 1

�

| {z }
TO2W

x̃O
. (24)

With the object space, three transformations are involved
to project an object-space point onto the i-th image plane:
Object space → world space → i-th camera space → i-th
image plane, which can be formally described as

ziũi = KiTW2CiTO2Wx̃O (25)

= Ki

⇥
Ri ti

⇤  sI d
0> 1

�
x̃O

. (26)

Here, ũi is the homogeneous coordinates of the pixel coor-
dinates, zi is the depth of the pixel, Ki is the 3⇥ 3 intrinsic
matrix of the i-th camera, and Ri 2 SO(3) and ti 2 R3

represent the world-to-camera rotation and translation, re-
spectively.

Camera position in object coordinates. In volume ren-
dering, camera position and viewing directions are required
to determine the ray from which we sample points. In object
coordinates, the camera position cO

i can be obtained from its
world coordinates cW

i as

cO
i = (cW

i � d)/s with cW
i = �R>

i ti. (27)

Equivalently, cO
i can be obtained as the null vector of object-

to-camera transformation since it transforms the camera po-
sition to the origin in camera coordinates:

TW2CiTO2Wc̃O
i = 0. (28)

Ray directions in object coordinates. The scale and
translation do not affect directional vectors. Therefore, the
viewing directions in object coordinates stay the same as in
world coordinates:

vO = vW = R>
i K

�1
i ũ. (29)

The same applies to normal and light directions.
3The symbol s denotes the object-to-world scale in this section only,

whereas it is referred to the shadow factor in the main paper.



Mesh vertices in world coordinates. Since the neural
SDF is trained in object coordinates, extracting its zero-
level set by marching cubes yields a mesh with vertices in
object coordinates. Converting the mesh to world coordi-
nates is realized by

pW = spO + d, (30)

where pO indicates the object coordinates of a mesh vertex,
and Eq. (30) is applied to all vertices.

8.2. O2W Scale and Translation Estimation

Estimating the object-to-world scale and translation before
reconstruction requires prior knowledge about the scene.
For object-centric reconstruction, the object space origin
can be defined as the point closest to the camera princi-
pal axes of all views [52]. However, this may not po-
sition the object in the center of the unit sphere well if
the principal axes of the surrounding cameras do not point
to the target object. For large-scale scene reconstruction,
sparse 3D points reconstructed by structure-from-motion
are used [29], and manual effort is required to segment the
scene of interest.

In this work, we use the known camera parameters and
foreground masks, which are readily available as input to
our method, to normalize the scene. Given that the object
is assumed to lie within a unit sphere in object space, the
projection of this unit sphere onto each image should ideally
encompass the foreground pixels across all views. Based
on this constraint, we use a two-step process to estimate the
object-to-world translation and scale.

O2W translation estimation. We expect the object to be
centered at the origin of the object space. To this end, we
estimate the O2W translation vector d such that the ob-
ject space origin lies as close as possible to the foreground
center-of-mass rays across all views. Let oi+ tvi be the ray
in world coordinates passing through the center of mass of
the foreground region in the i-th view, where oi is the cam-
era center and vi is the corresponding viewing direction. In
world coordinates, the origin of the object space is located
at d. The squared distance from d to the ray is given by

d
2(d,oi + tvi) = d>Vid� 2o>

i Vid+ o>
i Vioi, (31)

where Vi = I � viv>
i . The O2W translation is then ob-

tained by minimizing the sum of squared distances across
all views:

d⇤ = argmin
d

X

i

d
2(d,oi + tvi). (32)

The objective Eq. (32) is quadratic and convex, and thus
attains a global optimum at the critical point where the gra-
dient takes 0. Setting the gradient of Eq. (32) to zero yields

the normal equation:

V>Vd = V>b (33)

with V =
X

i

Vi, b =
X

i

Vioi. (34)

We solve Eq. (34) using a least-squares solver.

O2W scale estimation. Once the O2W translation d⇤ is
determined, we then estimate the O2W scale s such that the
projected unit sphere fully encloses the foreground regions
in all views. This is enforced by ensuring that the sum of the
projected sphere areas of all views is greater than a factor k
times the sum of all foreground areas:

s
⇤ = argmin

s

 
X

i

Ai(s)

!
� k

X

i

Âi. (35)

Âi is the foreground area, and Ai(s) is the projected sphere
area in the i-th view. To analytically compute Ai(s), we
make two approximations: (1) The projection of a 3D
sphere onto the image plane is approximately circular, and
(2) the radius ri of this projected circle can be approximated
using the principle of similar triangles:

ri

s
⇡

fi

zi
, (36)

where fi is the focal length of i-th viewpoint, zi is the depth
of object-space origin in i-th camera coordinates, i.e., zi =
(Rid⇤ + ti)z . With the approximations, the projected area
of the unit sphere in the i-th view is given by

Ai(s) = ⇡r
2
i ⇡

⇡s
2
f
2
i

z2i

. (37)

Substituting Eq. (37) into Eq. (35) yields a closed-form so-
lution for the O2W scale:

s =

vuut k
P

i Âi

⇡
P

i

⇣
f2
i

z2
i

⌘ . (38)

Empirically, we find that a scaling factor of k = 5 works
well for all DiLiGenT-MV [27] scenes and our captured ob-
jects, as shown in Fig. 16.
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Figure 14. BRDF map. For each pixel in the input image, we retrieve its corresponding surface point from the spatial MLP and render its
BRDF on a sphere under a colocated camera and light.



Figure 15. Visualization of camera positions with respect to the object. Our setup does not contain aligned viewpoints across lighting,
and images on the same elevation are captured under the same light source. Meshes are produced by RealityCapture [1] and enlarged for
improved visibility.

Figure 16. Visualization of scene normalization results. (Top row) DiLiGenT-MV [27] scenes. (Bottom row) Our self-captured scenes.
White pixels indicate foreground regions, gray pixels denote the projected unit sphere, red circles mark the center of mass of the foreground
regions, and blue crosses indicate the centers of the projected unit sphere.
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