Refer to Any Segmentation Mask Group With Vision-Language Prompts

Appendix

In this appendix, we provide additional details on the imple-
mentation of our model RAS (Section A) and our datasets
MASKGROUPS-2M (Section B) and MASKGROUPS-HQ
(Section C). Furthermore, we include additional experi-
ments (Section D), ablation study (Section E), and quali-
tative results (Section F).

A. Implementation Details

Visual encoder ensemble. Following Cambrian-1 [56],
we use four visual encoders: OpenAl CLIP ViT-
L/14@336 [48], OpenCLIP ConvNeXt-XXL@1024 [6,
38], SigLIP ViT-SO400M/14 @384 [72], and DINOV2 ViT-
L/14@518 [42]. In addition, we provide 2D sinusoidal po-
sition embeddings [12] of shape 32 x 32 and treat them as
visual features produced by a fifth visual encoder. All input
images are padded to an aspect ratio of 1 : 1, resized to the
input size required by each encoder (up to 1,024 x 1,024),
and fed into each encoder. All visual encoders are frozen
during the entire training process.

Mask projector and its pretraining. We initialize RAS
with weights from LLaVA-1.5-13B [36]. The mask projec-
tor is a two-layer multilayer perceptron (MLP) that projects
the concatenated mask-level visual features to the language
model space. As a new module, the mask projector is ran-
domly initialized. Before training the whole RAS model,
we first pretrain the mask projector on the LLaVA-Pretrain
dataset [35, 36] with a modified pretext task. We use
SAM [24] to generate a set of masks per image and replace
the original image tokens with our mask tokens for the im-
age captioning objective. To correctly understand and de-
scribe a given image, the model needs to align the mask
tokens with the LLM feature space. During the pretraining
stage, we set the batch size to 128 and set the base learning
rate to 1 x 1073, We train on LLaVA-Pretrain for 1 epoch.
Visual instruction tuning. After pretraining the mask pro-
jector, the entire RAS model (except the visual encoders) is
trained in the visual instruction tuning stage. A binary se-
lection classifier (two-layer MLP) is randomly initialized.
Then, we minimize a binary cross-entropy loss. Due to the
imbalanced distribution of positive/negative samples (usu-
ally only a few masks should be selected from a large pool
of candidate masks), we assign a loss weight of 5.0 to pos-
itive candidates. During the visual instruction tuning stage,
we set the batch size to 128 and set the base learning rate to
2 x 10°. We train on MASKGROUPS-2M for 1 epoch.
Further finetuning. For improved performance on special-
ized tasks (ORES, RES, and GRES), we further finetune
RAS on these tasks separately. We set the batch size to 64

and use the same base learning rate as instruction tuning.
Due to different data scales, we finetune RAS on ORES or
GRES for 4 epochs, and finetune RAS on RES for 2 epochs.
Optimization and computation. Following Vicuna [7] and
LLaVA [35], we use a cosine learning rate schedule with
warm-up in each training stage. The optimizer is Adam [22]
with zero weight decay. All of our training is performed on
8 NVIDIA A100-80GB GPUs. The pretraining stage re-
quires about 4 hours. The visual instruction tuning stage on
MASKGROUPS-2M requires about 1.5 days. Further fine-
tuning for ORES, RES, or GRES requires another 1.5 days.

B. Construction of MASKGROUPS-2M

MASKGROUPS-2M is converted from object-level an-
notations of existing image datasets. The sources of
MASKGROUPS-2M are detailed as follows.

MS-COCO [32] and LVIS [16]. Since LVIS uses the same
images as MS-COCO, we merge their annotations by com-
bining instances with overlapping masks. For each image,
we find object categories with at least 2 object annotations
and create a category-based mask group with or without ref-
erence masks.

Visual Genome [26]. Because mask annotations are not
provided by Visual Genome, we first use SAM [24] to pro-
duce segmentation masks based on bounding box annota-
tions and filter low-quality masks. We create category-
based mask groups and attribute-based mask groups, sim-
ilar to MS-COCO and LVIS. Furthermore, we compare the
coordinates of bounding boxes to decide if an object is on
the left side of, on the right side of, on the top of, or at the
bottom of the entire image or another object, and then pro-
duce position-based mask groups with or without reference
masks. In addition, Visual Genome provides annotations
of relationships, which are triplets of (subject, relationship,
object). In each image, we find triplets with a) the same
subject and the same relationship but different objects, or
b) the same object and the same relationship but different
subjects, and formulate mask groups accordingly.

RES [69] and GRES [34]. The RES datasets, including
RefCOCO, RefCOCO+, and RefCOCOg, provide corre-
spondences between a referring expression and an object,
which can be directly converted into a single-mask group.
The GRES dataset, gRefCOCO, contains referring expres-
sions and their target object sets, and they can be converted
into mask groups including a varying number (zero, one, or
more than one) of masks. To avoid data contamination, we
exclude images that are used for RES/GRES validation or
test sets from the entire MASKGROUPS-2M dataset.
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Figure A. Prompt type distribution in MASKGROUPS-HQ. A
grouping criterion may involve the categories, the attributes, the
absolute or relative positions, the cross-entity comparisons, and
even their combination.

C. Statistics of MASKGROUPS-HQ

MASKGROUPS-HQ extends the existing mask annotations
in EntitySeg [46] with vision-language prompts and mask
groups. Human annotators are encouraged to propose
creative and meaningful entity groups, so the prompts
are very diverse and difficult to categorize. Neverthe-
less, we provide some statistics for better understanding
of MASKGROUPS-HQ: 28% of the samples include ref-
erence masks in the prompts, and the other 72% do not
contain reference masks. In Figure A, we visualize the
distribution of the prompts based on their grouping crite-
rion. Note that each prompt may be labeled with multiple
types. For example, the prompt “All paper products smaller
than <mask-ref>” simultaneously involves a category
(“paper product”), an attribute (‘“small”’), and a comparison
(“smaller than <mask-ref>").

D. Additional Experiment Results

SEEM on ORES. As introduced in the main paper, though
some interactive segmentation models such as SEEM [77]
are able to take text and visual prompts simultaneously, their
visual prompts can only be directly used for locating the
target object. In contrast, visual prompts in ORES are of-
ten for a reference object that has a certain relationship with
the target. In Figure B, we visualize examples of prompt-
ing SEEM with both text and visual prompts and compare
the results with our model RAS. SEEM outputs masks di-
rectly corresponding to the visual prompt, instead of cor-
rectly understanding the mixed prompt as required by the
ORES task. In contrast, our model RAS successfully se-
lects the correct group of masks.

Finetuning GSVA on our data. To understand the impact
of training data, we finetune GSVA [62], the previously best
GRES model, on our data and evaluate its ORES perfor-
mance on MASKGROUPS-HQ. As shown in Table A, fine-
tuning GSVA on samples from MASKGROUPS-2M does

All items on <mask -ref>.

Figure B. SEEM, a representative interactive segmentation
model, fails in our ORES task. Instead of understanding the re-
lationship (e.g., “on the reference entity”) specified by the vision-
language prompt, SEEM [77] simply produces a mask that over-
laps with the visual prompt. In contrast, our proposed RAS model
can correctly understand the vision-language prompt.

w/o <mask-ref>

Model Data gloU cloU
GSVA 35 [62] GRES (original) 41.98 49.55
GSVA |35 [62] 0.5M of MASKGROUPS-2M  41.21 36.40
GSVA 35 [62] MASKGROUPS-HQ 56.79 70.11
RAS 138, sam (Ours) 0.5M of MASKGROUPS-2M  54.76 57.73
RAS 138, sam, ores-Fr (Ours)  MASKGROUPS-HQ 66.71 74.59

Table A. Results of finetuning GSVA on our data. Finetun-
ing GSVA [62], the previously best GRES model, on samples of
MASKGROUPS-2M, does not achieve better ORES performance
than the GSVA model trained with its original data recipe. When
finetuned on the training samples of MASKGROUPS-HQ, RAS
significantly outperforms GSVA in the ORES task.

not yield better performance than its original data recipe,
i.e., finetuning on GRES data, and is significantly worse
than RAS trained on the same data. Finetuning RAS on
the training split of MASKGROUPS-HQ also leads to bet-
ter ORES performance than GSVA. Note that training on
MaskGroups-2M does not necessarily provide an advan-
tage for performance on MaskGroups-HQ due to the do-
main gap: The samples in MASKGROUPS-2M are con-
structed from fixed templates, while the samples from
MASKGROUPS-HQ are written by human annotators in
any free form. Therefore, the stronger performance of our
model RAS should be attributed more to its model design.

Converting visual prompts into language. In the main
paper, we have discussed the limitations of existing GRES
models [34, 62, 74]: They cannot take visual prompts that
represent reference entities as inputs, and therefore can-
not process all samples in the ORES task (Table 3). One
may argue that visual prompts in ORES can be replaced by
text prompts (e.g., “Locate all pillows on <mask-ref>”
— “Locate all pillows on the bed”, Figure 1). However,



w/ <mask-ref>

Prompt Model gloU cloU
ReLA [34] 21.15 24.14
PSALM, 35 [74] 24.68 24.19
Text + Converted <mask-ref> GSVAj3p [62] 22.66 25.10
RAS 138, sam (Ours) 27.13 27.74
RAS 138, sam, ores-rr (Ours)  43.76 47.80

RAS 138, sam (Ours) 35.91 37.77

Text + Visual <mask-ref> RAS 135, sawt ores.sr (Ours)  58.72 68.77

Table B. Results of converting visual prompts into language.
We manually translate visual prompts for reference entities into
language (e.g., “Locate all pillows on <mask-ref>" — “Lo-
cate all pillows on the bed,” see Figure 1), and test multiple GRES
models and our RAS model on the converted prompts. The orig-
inal visual prompts lead to better performance than the converted
prompts, demonstrating that visual prompting is necessary in re-
ferring expression segmentation. When provided with pure-text
prompts, our model RAS still outperforms all prior GRES mod-
els. The subscript ores-rr means evaluation of RAS that is further
finetuned on the original training set (not including the converted
prompts) of MASKGROUPS-HQ.

when the scene is complex and involves multiple semanti-
cally similar objects, visual prompts can hardly be clearly
and concisely “translated” into language. To investigate
this discrepancy between visual prompts and text prompts,
we manually convert <mask-ref> into language for 200
samples in MASKGROUPS-HQ), and test GRES models and
our RAS on these samples. As shown in Table B, vi-
sual prompts are better perceived by RAS, indicating that
such visual prompts are necessary to guide the model in ac-
curately locating the target entities that are related to the
reference entity. When provided with the same pure-text
prompts, despite the increased complexity of the converted
prompts, RAS still outperforms the existing GRES models.

E. Additional Ablation Study

Special tokens in mask tokenization. In RAS, we prepend
a learnable special token <mask-pool-pre> to each
candidate mask token and prepend a <mask-ref-pre>
token to each reference mask token. These special tokens
indicate the different roles of the following tokens. In Ta-
ble C, we compare RAS with two variants: The first variant
does not prepend any special tokens to the mask tokens, and
the second variant prepends the same token to both candi-
date mask tokens and reference mask tokens. Using two
different special tokens in mask tokenization achieves the
best performance.

LMM scales. In the main paper, we report the results of
training our model RAS based on LLaVA-1.5-13B [36],
which originates from Vicuna-13B [7]. In principle, RAS
can be built on other LLMs of different parameter scales.
As an example, we train another RAS based on LLaVA-
1.5-7B. The model performance is summarized in Table D.

Special tokens W/0 <mask-ref> W/ <mask-ret> Overall cloU

No <pre> tokens 55.61 34.98 50.13
Same <pre> tokens 54.68 32.37 48.49
Different <pre> tokens 57.73 44.47 53.75

Table C. Comparison of RAS with different special tokens
prepended to mask tokens. Prepending <mask-pool-pre>
to candidate mask tokens and <mask-ref-pre> to reference
mask tokens leads to the best result. All models are trained on
the same 0.5M samples from MASKGROUPS-2M and evaluated
on MASKGROUPS-HQ.

Model ORES RES GRES

RAS 78, sam/copETR ~ 52.19  73.7  67.30
RAS 138, sam/copETR ~ 53.93  75.0 67.78

Table D. Comparison of RAS with different LLM scales. The
larger 13B LLM leads to a stronger performance on all tasks. The
metric is the overall cloU. We use SAM as the mask proposal
model in ORES, and use Co-DETR in RES and GRES, consis-
tent with the main results in Tables 3, 4, and 5.

F. Additional Qualitative Results

Our RAS shows strong generalization beyond MS-COCO
benchmarks, where prior works primarily focus. As shown
in Figure C, our model outperforms GSVA on out-of-
distribution (OOD) images. This is achieved by decoupling
mask generation and selection, allowing RAS to leverage
strong generalization capabilities of SAM.

Image GSVA, 35

RAS,35 spv (Ours)
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Figure C. Qualitative comparison on OOD examples. Our RAS
framework generalizes better to novel image domains, such as
under-water images and cartoon-style images.

In Figure D, we provide additional visualized results of ap-
plying RAS and other GRES models in the ORES task.
RAS (both before and after finetuned on MASKGROUPS-
HQ) achieves better results on MASKGROUPS-HQ than all
previous GRES models, which is consistent with our quan-
titative evaluation in Table 3 of the main paper.
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Figure D. Qualitative comparison on MASKGROUPS-HQ.



