Supplementary Materials: “Taming Flow Matching with Unbalanced Optimal
Transport into Fast Pansharpening”

Abstract

In this supplementary, we provide more background on
pansharpening and diffusion models in Sect. 1. The proof
of Prop. 3.2 is detailed in Sect. 2 that proves the ad-
ditional pansharpening-based regularization in the unbal-
anced optimal transport cost can provide an OT map in
saddle points. More discussions of proposed OTFM are de-
tailed in Sect. 3. Additional quantitative results and visual-
izations are provided in Sect. 4 to verify the effectiveness of
the proposed OTFM.

1. Background

In this section, we provide recent works of deep-
learning-based models for pansharpening, basic preliminary
of diffusion models, and diffusion applications for pan-
sharpening.

1.1. Deep Models for Pansharpening

Recently, deep learning methods are widely used for
pansharpening. They are more flexible and effective than
traditional methods, leading to better reconstruction qual-
ity and increased popularity in the field. PNN [10] is
the earliest deep model applied to the Pansharpening task,
achieving results far superior to traditional methods using a
three-layer CNN architecture. Recognizing the spatial and
spectral properties in Pansharpening, PanNet [17] injects
high-frequency information from PAN into the upsampled
LRMS to produce HRMS. Inspired by traditional methods,
FusionNet [3] designs a neural network that takes the differ-
ence between upsampled LRMS and PAN as input, yielding
finer panchromatic sharpened images. The global receptive
field of the Self-attention mechanism addresses the local re-
ceptive field issue in CNNs, significantly advancing deep
model development. ViTPAN [12] inputs cropped LRMS
and PAN into a three-layer self-attention-based encoder, re-
sulting in high-quality HRMS. PMACNet [9] utilizes a par-
allel dual-branch network structure to process spatial and
spectral features, extending the Self-attention mechanism to
pixel-level fusion for more refined results.

1.2. Diffusion Models and Applications on Pan-
sharpening

The diffusion model, as a generative model, has demon-
strated remarkable performance in image processing tasks
such as image super-resolution [5] and image restora-
tion [19, 8]. Recently, several outstanding works have also
emerged in Pansharpening. PanDiff [11] decomposes the
fusion process into multiple Markov processes and utilizes
U-Net to reconstruct HRMS from random Gaussian noise.
DDIF [2] injects coarse-grained style information and fine-
grained high and low-frequency details of PAN and LRMS
into the diffusion model to reconstruct high-quality images.
SSDiff [18] approaches the Pansharpening task from a sub-
space decomposition perspective using a diffusion model,
employing an alternating projection method to fuse discrim-
inative spatial and spectral features, achieving superior re-
construction quality.

The diffusion model consists of forward and reverse pro-
cesses. The forward process gradually adds noise to the
prior distribution x over T' steps of a Markov chain, trans-
forming it into an approximate standard normal distribution
xp ~ N(0,I). Through the reparameterization trick, z; of
any timestep ¢ can be directly obtained from x( using the
following formula.

q(x¢[x0) = Vauxo + V1 — aye, (17)

where e ~ N(0,I) and oy = 1 — B4, 4y = H:ZO o, Brisa
pre-defined variance schedule.

The reverse process aims to eliminate the degradation
introduced in the forward process, gradually denoising from
x; to recover xg. To achieve this, a neural network can be
utilized to learn the distribution of py(x;—1|x:), followed
by iterative denoising as follows:

Po(Xe—1]%t) = N (x¢—1; o (x4, 1), Yo (x4, 1)),  (18)

where 19 and Xy are the mean and variance of py(x;—1|x¢),
respectively, and 6 is the parameters of model. The mean
and variance can be computed as follows:
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After performing the aforementioned T-step sampling, a
high-quality reconstructed image can be obtained, but this
comes at the cost of significantly higher time overhead com-
pared to single-step sampling models.

2. Proof

In this section, we provide the proof of Props. 3.1
and 3.2, which is about the dual formulation of the unbal-
anced optimal transport (UOT) and the saddle points for
pansharpening-regularized UOT cost.

2.1. Proof of Proposition 3.1

Proposition 2.1 (Dual formulation of UOT). The UOT dual
formulation, Cyor (P, Q), can be obtained by using the c-

transform:
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Proof. Recall that the UOT problem is,

inf x, d x, + D P)+ D .
ﬂen(P,@)/Xxy( y)dm(z,y) #(mo|PP) 7(m1]Q)

Using the f-divergence’s definition Dy(p,v) =
i f(j—’y‘)du, it can be rewritten as,
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The Lagrangian formulation of Eq. (22) is,
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where 7, k are slack variable of my and 7. wu,v are the
Lagrange multipliers associated with the constraints. One
can form the dual Lagrangian function, which is,

dwxy

g(u,v) = inf L(m,n, k,u,v). (24)
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Then the optimization are seperated w.r.¢ each varibles,
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Then, we can write Eq. (25) into,
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If ¢(z,y) — u(z) — v(y) < 0 and all mass of the plan =
are concentrated into one coupling. The problem (28) is
—o0. Under this trivial solution, we can set ¢(x, y) —u(x) —
v(y) > 0. Finally, the UOT dual formulation is,

-
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which concludes this proposition. O
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Note that ¢(z,y) = u(z) + v(y) is taken over 7-almost
everywhere, because f is non-decreasing, which means,

(u, v)eC ><C Y)[/ —/(= dP(z) (30)
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where Z(-) is the indicator function. In remark 3.2, we set f
to be convex, non-decreasing, and differentiable. Thus, all
terms in Eq. (30) are finite by letting v = —1 and v = —1.
Moreover, the strong duality is still held by using Fechel-
Rockafellar’s theorem. Finally, the dual form with con-
straint u(z) + v(y) < ¢(x, y) is concluded as,
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This leads to the UOT objective L, ., in Eq. (12).
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Figure 1. Fused GF2 full-resolution data and their corresponding HQNR map. The high value in the HQNR map means better full-

resolution fusion performance.

2.2. Proof of Proposition 3.2

Proposition 2.2 (Saddle points of pansharpening-regular-
ized UOT provide the OT maps). For any optimal potential
function v* € argsup, L, it provides the OT map T*
which holds

T* € argmin Lp (T, v"). (32)
T

Proof. Denote the pansharpening-regularization cost as
g(y) (see Eq. (14)). The full UOT cost is: &(z,y) =
c(z,y) + g(y). From Eq. (31), when v* is obtained, we
have the UOT loss w.r.t Ty,
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Using 7%, = Q and the change of variable 7jj (x) = y, we
have,
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Due to f is non-decreasing, we have
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which proves this proposition. O

3. Differences with GANs

Our UOT learning objective shares a similar min-max
learning paradigm with GANSs, as both involve optimizing

competing objectives. However, unlike GANs, our UOT
approach is not grounded in the adversarial game-theoretic
framework. Instead, it relies on a well-defined OT cost
function. Consequently, our method avoids the inherent
instability issues commonly encountered in GAN training,
such as mode collapse or oscillatory convergence, as the
optimization process is guided by a stable and mathemat-
ically grounded objective rather than the dynamic balance
between a generator and a discriminator. Furthermore, the
use of UOT allows for greater control over the marginal
constraints, enabling more flexible and robust distribution
matching compared to the implicit density estimation per-
formed by GANSs.

In OTFM, the integration with Flow Matching (FM) en-
sures that UOT and FM losses operate simultaneously. The
UOT loss enforces the mapping network T} to act as a one-
step generator, while the FM loss guides the velocity net-
work sg to learn the correct flow along the interpolation
path. Notably, sy and Ty are the same network, as the veloc-
ity y1 — yo and the mapped HRMS y; can be derived from
one another. In contrast, GANSs rely on an adversarial train-
ing framework, where a generator and a discriminator com-
pete in a minimax game. While GANSs can achieve impres-
sive results, they are prone to training instability and mode
collapse due to the lack of explicit constraints on the inter-
mediate dynamics or flow, which are inherently addressed
in OTFM through FM.

4. Additional experiments
4.1. Datasets

To evaluate the performance of OTFM against other
state-of-the-art (SOTA) methods, calculating both reference
and non-reference metrics on reduced resolution and full
resolution datasets, respectively. Specifically, in Gaofen-2
and QuickBird, the spatial resolutions of the PAN images
are 0.8 meters and 0.6 meters, respectively, while the corre-
sponding MS images have four bands (red, green, blue, and
near-infrared) with spatial resolutions of 3.2 meters and 2.4
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Figure 2. Visual comparisons on QuickBird reduced-resolution dataset. The second and fourth rows are error maps.

Table 1. Results on the QuickBird full-resolution datasets. The
best results are in red, and the second best results are in blue.

Full-Resolution (FR): Avg+std
Dy Ds () HQNR (1)

MTF-GLP-FS [14] 0.049+0.015 0.138+0.024 0.820+0.034
BT-H [1] 0.23040.072 0.165+0.016 0.643+0.065
DiCNN [6] 0.0924+0.014 0.107+0.021 0.81140.031
FusionNet [4] 0.05940.019 0.052+0.009 0.892+4+0.022
LAGConv [7] 0.08440.024 0.068+0.013 0.854+0.018

Method

DCFNet [15] 0.045+0.015 0.124+0.027 0.8364+0.016
MMNet [16] 0.089+0.051 0.097+0.038 0.8234+0.032
HFIN [13] 0.06540.025 0.078+0.019 0.862+0.019
PanDiff [11] 0.059+0.022 0.064+0.025 0.88140.042
DDIF [2] 0.058+0.013 0.049+0.010 0.895+0.021
Proposed 0.053£0.017 0.025£0.013 0.922+0.020

meters. WorldView-3 offers even higher spatial resolutions
(PAN: 0.3 m and MS: 1.2 m) and provides spectral informa-
tion across eight bands, which additionally includes coastal,
yellow, red edge, and near-infrared-2 bands.

4.2. Results on GaoFen-2

Fig. | presents a visual comparison of the real full-
resolution GF2 dataset and the corresponding HQNR map.
The closer the HQNR map approaches red, the better the
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reconstruction quality of the real image. It can be observed
that OTFM, PanDiff, DCFNet, and DDIF all exhibit strong
performance, with distortions mainly occurring at the image
edges. OTFM, in particular, handles architectural details in
the central region of the image more effectively, demon-
strating its efficacy on real datasets.

4.3. Results on QuickBird

Fig. 2 displays the visual comparison results from the
reduced-resolution dataset of QB, where OTFM recon-
structs more details of the building roofs, which is partic-
ularly evident in the zoomed-in local images. Additionally,
we conducted experiments on the full-resolution QuickBird
dataset and evaluated the performance of OTFM. Similarly,
the no-reference metrics were obtained from 20 randomly
selected test images in the QB dataset. The performance
comparison is reported in Tab. 1. Our OTFM achieves the
best overall quality, with an HQNR score of 0.922. Sur-
prisingly, the traditional method MTF-GLP-FS ranks sec-
ond only to DCFNet in the D) index, indicating its superior
capability in spectral reconstruction.
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