B UniVerse: Unleashing the Scene Prior of Video Diffusion Models for
Robust Radiance Field Reconstruction

Supplementary Material

7. More Details for Method

7.1. Sorting Images for Sparse Trajectory.

Starting with K poses { P, } X |, we initialize a double linked
list { P/}£_, with a randomly chosen pose Py € {P;}X,,
where L is the length of the list. At each iteration, for any
pose P. € {P;}X \{P/}L |, we calculate its distance with
the list Dpy, as follows:

D (Pe {P{})

(7
Here, P}, g and P/, are the head and tail of the current
list, i.e., P! and P!. The distance between poses Dp is
defined as:

T 1-
“r Dp(Ra, Ry) + —2

Dp(P,, Py) =
SR ST

" Dp(Ty, Ty).
®)

Here, R, and T, are the rotation matrix and translation vec-
tor of the pose FP,, respectively. w, is the weight for rotation
distance, and sy and st are scale factors to ensure rotation
and translation distances have the same scale. We calculate
the rotation distance Dy, as:

Dg(R,, Ry) = arccos (trace(R(;Rb)—l) ,

and the translation distance D as:
Dr(T,,Ty) = || Ty — Tp||2- (10)

After calculating the distances of all P. and {P/}E |, we
add the new pose P, .,, with minimal distance to the list:

Pnew = argmin DPL(newv{Pl = 1) (11)

Pee{P Y \{PI Y,

If P,y is closer to P} .. we add an edge from P}__, to
Pyew and turn P,,.,, into P}ILea 4> otherwise, we do the same
for Ptlail' We iteratively perform this process until all poses
in {P;}K | are added to the list. After that, we start from
P eqq and traverse the whole list by edges to get an ordered
set of poses { P/} £ (1 e, {PIHE

Accordmg to {P’ S, we obtam the ordered images
{I!}K . Along the ordered poses P/, P, ..., P}, we ac-
tually obtain an appropriate implicit camera trajectory. We
show this process in both Alg. 2 and Fig. 10.

7.2. Sampling Implicit Views

At each iteration, given N ordered poses { P/} ; and cor-
responding N inconsistent images {I/}Y ;, our goal now

= min{DP(P07 Pflzead)’ DP(PC7 Ptlail)}'

Algorithm 1 UniVerse
Input: Inconsistent multi-view images {I;}X,, rough
camera poses {P;}X |, camera pose estimation method
Camera(-) conditional video diffusion model V(-), num-
ber of images per iteration NN, pose sort function
ThreadPose(-), the function to turn images to initial
videos T2V (-), transient occlusions segment model Seg(-),
3D Reconstruction Method Recon(+)
Initialization I rel — {}
{INE APYE | « ThreadPose({I;}E |, {P}E))
Ly <+ manually/random choose an image from {I/}}¥
2: while K > 1do
3. Initiate inpainting and style masks M

{}, M** {3

4 Extract the first N images {1,

5: vt RRV{TIIY, f), vi™ refers to initial video
6: for each frame v; in vi" do

7: ifv; € {I/}V, then

8 Mask transient occlusions: M}", v; < Seg(v;)
9: else
10: Fill the inpainting mask M Jm with 717

11: end if

12: if v; is I, then

13: Fill style mask M with 17,
14: else
15: Fill style mask M jt with 707,

16: end if

17: M. append(M™), M*' .append(M3*)

18: end for

19: v V(Vim'7 Min, Mst)

20: Extract the restored images {I7¢'}}Y | from v"®

21: Jrel « Jrely {Ilre/}i\il

220 Igpy < I

23: {I’}K1<—{I’ i N+17K<—maX(K—N,0)

24 {INE, {1y u{ILE

25: Update K+ K+1

26: end while

27: # now we get consistent images 17 (i.e. {I7¢'} K

28: {P/}K | < Camera(I"®') # estimate poses agam us-
ing consistent images

29: Output: the
Recon(I™", {P/}X)

reconstructed 3D scene

is to create a initial video of f frames inluding all the in-
put IV images. And we inflate it to f frames by sampling

: explicit camera pose (3]: implicit camera pose

Poit ...
2R 7P

(a) Input unordered camera

(b) Initiate double link list with a
poses {P¥,

random chosen pose

(h) Sample implicit dense views
from the trajectory

"5
(g) We get ordered poses {P '}, ,
and thus the trajectory

(c) (d) Adding edge to the
nearest pose

I 1
Phead ‘ m,| Phead

(f) Starting from head and traverse
the whole list

‘ tall
(e) List established after all poses
added to it

Figure 10. The flowchart of how we transform a set of multi-view images into a initial video. Here we take an example with 5 input images
and their poses. Given 5 unordered poses shown in (a), we firstly random choose a pose to initiate a double link list in (b). Next, we
iteratively add the nearest pose to the list until all poses are in the list, shown in (c)(d)(e). Then in (f) we start from the head of the list and
traverse the whole list and obtain the ordered poses in (g). Finally we add new poses to the intervals of input poses, making the trajectory

dense and thus transform images to video.

Algorithm 2 ThreadPose for Implicit Camera Trajectory

Input: Poses {P;}X,, add_edge(-) func to add bidi-
rectional edges, Traverse(-) func to traverse the list by
edges

. Initialize a double linked list { P!} -
chosen pose P € {P}E
cSet L+ 1, P} «+ let

while {P;}X |\ {P!}L, is not empty do

4: Find the pose P,c. w1th the minimal distance:

-, with a randomly

W N

Pnew =

arg min Dpr(Prew, {PT2)

Pce{Pz}{(:1\{le iL=1

if Dp(Ppew, PL...) < Dp(Ppew, PL) then
Preqq-add_ edge(new)
Phead A Pnew
else
Ptazl'addfedge(Pnew)
10: Pl 1+ Prew
11: end if
122 L+ L+1
13: end while
14: {P/}E | « Traverse(Phead)
15: Output: Ordered poses { P/},

B A4

f — N new poses and thus new views. First, we compute

the distances {d;} 7' between neighboring poses:

d;=Dp(P,P)), i=12...,N-1. (12

Next, we determine the number of new poses n; to be in-
serted between each pair of neighboring poses P; and P; ;,
proportional to the distance d;:

d; ,
n; = {z:fv_lldl X (f—N)J , 1=1,2,...,N—1,
(13)
where | x| denotes the floor function, which gives the great-
est integer < x. Since the sum of n; might not exactly equal
f—N due to the floor operation, we distribute the remaining
poses. We calculate the remaining number of poses r:

N-1
r=(f-N)=) n. (14)
i=1

Then, we add one additional pose to the r largest intervals
(i.e., the intervals with the largest d; values) by increment-
ing n; for the r largest d; values:

ni = n; + 1 ifd;is ‘among the r largest values, 15)
0 otherwise.

In this way, we obtain the number of inserted views. By
inserting n; zero frames into neighboring images I}, I; ;,
we get the initial video.

8. More Implementation Details

Adapt Video Diffusion Models with Mask Input: We
fine-tune the Video Diffusion Model from the 576 x 1024
interpolation model of ViewCrafter [67]. Since our method
utilizes additional masks (i.e. inpainting masks and style
masks), we need to change the input dimension of the De-
noising U-Net. We follow the fine-tuning approach of In-
painting Latent Diffusion [37]. Specifically, we change an
8 x C' X kernel_size x kernel_size 2D convolutional ker-
nel to 10 x C' X kernel_size X kernel_size by concatenating
two additional masks. To do this, we maintain the original
8 x C X kernel_size X kernel_size kernels and add zero-
initialized 2 x C' X kernel_size X kernel_size kernels to it.

Detect All Transient Objects in Input Images: In the
UniVerse pipeline, it is important to identify all transient ob-
jects to mask them. To achieve this, we first pre-define a set
of transient prompts, such as [person, car, bike].
We then use a Semantic Segmentation Model to detect the
pixels of the objects in the prompts. Using the positions
of these pixels, we employ the Segment Anything Model
(SAM) [24] to precisely segment the objects and obtain the
inpainting masks.

9. More Visual Results

Since UniVerse utilizes a VDM to turn initial videos into
restored videos, we present several examples in Figs. 11,
12, and 13, demonstrating how UniVerse leverages the
video prior to transform multi-view images into a consistent
video. In these figures, the top row shows the initial video
frames, while the bottom row displays the corresponding
restored video frames. The frames are arranged from left to
right in sequential order, with the first row showing frames
1-5, the second row showing frames 6-10, and so on.

Figure 11. Visualization of how UniVerse turns a initial video into restored video.

Figure 12. Visualization of how UniVerse turns a initial video into restored video.

2

Figure 13. Visualization of how UniVerse turns a initial video into restored video.

	Introduction
	Related Works
	Video Diffusion Models for 3D Reconstruction
	Robust 3D Reconstruction

	Method
	Turning Multi-view Images into Videos
	Conditional VDM for Initial Video Restoration

	Experiment
	Implementation Details
	Evaluation
	Abalation Study
	Further Applications of UniVerse

	Conclusion & Limitation
	Acknowledgment
	More Details for Method
	Sorting Images for Sparse Trajectory.
	Sampling Implicit Views

	More Implementation Details
	More Visual Results

