
UniVerse: Unleashing the Scene Prior of Video Diffusion Models for
Robust Radiance Field Reconstruction

Supplementary Material

7. More Details for Method
7.1. Sorting Images for Sparse Trajectory.
Starting with K poses {Pi}Ki=1, we initialize a double linked
list {P l

i }Li=1 with a randomly chosen pose Pinit ∈ {Pi}Ki=1,
where L is the length of the list. At each iteration, for any
pose Pc ∈ {Pi}Ki=1\{P l

i }Li=1, we calculate its distance with
the list DPL as follows:

DPL(Pc, {P l
i }Li=1) = min{DP (Pc, P

l
head), DP (Pc, P

l
tail)}.

(7)
Here, P l

head and P l
tail are the head and tail of the current

list, i.e., P l
1 and P l

L. The distance between poses DP is
defined as:

DP (Pa, Pb) =
ωr

sR
·DR(Ra, Rb) +

1− ωr

sT
·DT (Ta, Tb).

(8)
Here, Ra and Ta are the rotation matrix and translation vec-
tor of the pose Pa, respectively. ωr is the weight for rotation
distance, and sR and sT are scale factors to ensure rotation
and translation distances have the same scale. We calculate
the rotation distance DR as:

DR(Ra, Rb) = arccos

(
trace(RaRb)− 1

2

)
, (9)

and the translation distance DT as:

DT (Ta, Tb) = ∥Ta − Tb∥2. (10)

After calculating the distances of all Pc and {P l
i }Li=1, we

add the new pose Pnew with minimal distance to the list:

Pnew = argmin
Pc∈{Pi}K

i=1\{P l
i }L

i=1

DPL(Pnew, {P l
i }Li=1). (11)

If Pnew is closer to P l
head, we add an edge from P l

head to
Pnew and turn Pnew into P l

head; otherwise, we do the same
for P l

tail. We iteratively perform this process until all poses
in {Pi}Ki=1 are added to the list. After that, we start from
Phead and traverse the whole list by edges to get an ordered
set of poses {P ′

i}Ki=1 (i.e., {P l
i }Ki=1).

According to {P ′
i}Ki=1, we obtain the ordered images

{I ′i}Ki=1. Along the ordered poses P ′
1, P

′
2, . . . , P

′
K , we ac-

tually obtain an appropriate implicit camera trajectory. We
show this process in both Alg. 2 and Fig. 10.

7.2. Sampling Implicit Views
At each iteration, given N ordered poses {P ′

i}Ni=1 and cor-
responding N inconsistent images {I ′i}Ni=1, our goal now

Algorithm 1 UniVerse
Input: Inconsistent multi-view images {Ii}Ki=1, rough
camera poses {Pi}Ki=1, camera pose estimation method
Camera(·) conditional video diffusion model V(·), num-
ber of images per iteration N , pose sort function
ThreadPose(·), the function to turn images to initial
videos I2V (·), transient occlusions segment model Seg(·),
3D Reconstruction Method Recon(·)

1: Initialization: Ire′ ← {}
{I ′i}Ki=1, {P ′

i}Ki=1← ThreadPose({Ii}Ki=1, {Pi}Ki=1)
Isty ← manually/random choose an image from {I ′i}Ni=1

2: while K > 1 do
3: Initiate inpainting and style masks M in ←

{},Mst ← {}
4: Extract the first N images: {I ′i}Ni=1

5: vini ← I2V ({I ′i}Ni=1, f), v
ini refers to initial video

6: for each frame vj in vini do
7: if vj ∈ {I ′i}Ni=1 then
8: Mask transient occlusions: M in

j , vj ← Seg(vj)
9: else

10: Fill the inpainting mask M in
j with ”1”

11: end if
12: if vj is Isty, then
13: Fill style mask Mst

j with ”1”.
14: else
15: Fill style mask Mst

j with ”0”.
16: end if
17: M in.append(M in

j),Mst.append(Mst
j)

18: end for
19: vre ← V(vini,M in,Mst)
20: Extract the restored images {Irei ′}Ni=1 from vre

21: Ire′ ← Ire′ ∪ {Irei ′}Ni=1

22: Isty ← IreN
′

23: {I ′i}Ki=1 ← {I ′i}Ki=N+1,K ← max(K −N, 0)
24: {I ′i}Ki=1 ← {IreN ′} ∪ {I ′i}Ki=1

25: Update K ← K + 1
26: end while
27: # now we get consistent images Ire′ (i.e. {Irei ′}Ki=1)
28: {P ′

i}Ki=1 ← Camera(Ire′) # estimate poses again us-
ing consistent images

29: Output: the reconstructed 3D scene
Recon(Ire′, {P ′

i}Ki=1)

is to create a initial video of f frames inluding all the in-
put N images. And we inflate it to f frames by sampling

Identity

Rough
Video

Inpainting
masks

Reference
masks

Target
Images

Masked Inconsistent
Multi-view image ×N

...

CLIP Image
Encoder

Cross-attn

Learnable Query Embedding

++

FFN

++

Conditional Video
Diffusion Model

Downsample

Downsample

concat Denoising U-NetDenoising U-Net

...Multiple-input Query
Transformer

(Num of blocks)
×

(Num of blocks)
×

CLIP
Embedding

×NCLIP
Embedding

×N

Restored Video

Extract
crosponding

frames

Restored consistent
Multi-view image ×N

...

×B

: learnable query embeddings

1P

3P

4P

5P

2P

initP

(c) (d) Adding edge to the
nearest pose

(c) (d) Adding edge to the
nearest pose

l

headP

l

tailP
l

headP l

tailP
l

tailP
l

headP

......

(e) List established after all poses
added to it

(e) List established after all poses
added to it

l

headP l

tailP

(f) Starting from head and traverse
the whole list

(f) Starting from head and traverse
the whole list

l

headP l

tailP

(g) We get ordered poses ,
and thus the trajectory

(g) We get ordered poses ,
and thus the trajectory

(h) Sample implicit dense views
from the trajectory

(h) Sample implicit dense views
from the trajectory

1 'P

3 'P

4 'P

5 'P

(b) Initiate double link list with a
random chosen pose

(b) Initiate double link list with a
random chosen pose

5

1{ }i iP =

(a) Input unordered camera
poses

5

1{ }i iP =

(a) Input unordered camera
poses

5

1{ }'i iP =

1 'P

2 'P
3 'P

4 'P

5 'P

: explicit camera pose : implicit camera pose

2 'P

Figure 10. The flowchart of how we transform a set of multi-view images into a initial video. Here we take an example with 5 input images
and their poses. Given 5 unordered poses shown in (a), we firstly random choose a pose to initiate a double link list in (b). Next, we
iteratively add the nearest pose to the list until all poses are in the list, shown in (c)(d)(e). Then in (f) we start from the head of the list and
traverse the whole list and obtain the ordered poses in (g). Finally we add new poses to the intervals of input poses, making the trajectory
dense and thus transform images to video.

Algorithm 2 ThreadPose for Implicit Camera Trajectory
Input: Poses {Pi}Ki=1, add edge(·) func to add bidi-
rectional edges, Traverse(·) func to traverse the list by
edges

1: Initialize a double linked list {P l
i }Li=1 with a randomly

chosen pose Pinit ∈ {Pi}Ki=1

2: Set L← 1, P l
1 ← Pinit

3: while {Pi}Ki=1 \ {P l
i }Li=1 is not empty do

4: Find the pose Pnew with the minimal distance:

Pnew = argmin
Pc∈{Pi}K

i=1\{P l
i }L

i=1

DPL(Pnew, {P l
i }Li=1)

5: if DP (Pnew, P
l
head) < DP (Pnew, P

l
tail) then

6: Phead.add edge(Pnew)
7: P l

head ← Pnew

8: else
9: Ptail.add edge(Pnew)

10: P l
tail ← Pnew

11: end if
12: L← L+ 1
13: end while
14: {P ′

i}Ki=1 ← Traverse(Phead)
15: Output: Ordered poses {P ′

i}Ki=1

f − N new poses and thus new views. First, we compute

the distances {di}N−1
i=1 between neighboring poses:

di = DP (P
′
i , P

′
i+1), i = 1, 2, . . . , N − 1. (12)

Next, we determine the number of new poses ni to be in-
serted between each pair of neighboring poses P ′

i and P ′
i+1,

proportional to the distance di:

ni =

⌊
di∑N−1

i=1 di
× (f −N)

⌋
, i = 1, 2, . . . , N − 1,

(13)
where ⌊x⌋ denotes the floor function, which gives the great-
est integer≤ x. Since the sum of ni might not exactly equal
f−N due to the floor operation, we distribute the remaining
poses. We calculate the remaining number of poses r:

r = (f −N)−
N−1∑
i=1

ni. (14)

Then, we add one additional pose to the r largest intervals
(i.e., the intervals with the largest di values) by increment-
ing ni for the r largest di values:

ni = ni +

{
1 if di is among the r largest values,
0 otherwise.

(15)

In this way, we obtain the number of inserted views. By
inserting ni zero frames into neighboring images I ′i, I

′
i+1,

we get the initial video.

8. More Implementation Details
Adapt Video Diffusion Models with Mask Input: We
fine-tune the Video Diffusion Model from the 576 × 1024
interpolation model of ViewCrafter [67]. Since our method
utilizes additional masks (i.e. inpainting masks and style
masks), we need to change the input dimension of the De-
noising U-Net. We follow the fine-tuning approach of In-
painting Latent Diffusion [37]. Specifically, we change an
8 × C × kernel size × kernel size 2D convolutional ker-
nel to 10× C × kernel size× kernel size by concatenating
two additional masks. To do this, we maintain the original
8 × C × kernel size × kernel size kernels and add zero-
initialized 2× C × kernel size× kernel size kernels to it.

Detect All Transient Objects in Input Images: In the
UniVerse pipeline, it is important to identify all transient ob-
jects to mask them. To achieve this, we first pre-define a set
of transient prompts, such as [person, car, bike].
We then use a Semantic Segmentation Model to detect the
pixels of the objects in the prompts. Using the positions
of these pixels, we employ the Segment Anything Model
(SAM) [24] to precisely segment the objects and obtain the
inpainting masks.

9. More Visual Results
Since UniVerse utilizes a VDM to turn initial videos into
restored videos, we present several examples in Figs. 11,
12, and 13, demonstrating how UniVerse leverages the
video prior to transform multi-view images into a consistent
video. In these figures, the top row shows the initial video
frames, while the bottom row displays the corresponding
restored video frames. The frames are arranged from left to
right in sequential order, with the first row showing frames
1-5, the second row showing frames 6-10, and so on.

Figure 11. Visualization of how UniVerse turns a initial video into restored video.

Figure 12. Visualization of how UniVerse turns a initial video into restored video.

Figure 13. Visualization of how UniVerse turns a initial video into restored video.

	Introduction
	Related Works
	Video Diffusion Models for 3D Reconstruction
	Robust 3D Reconstruction

	Method
	Turning Multi-view Images into Videos
	Conditional VDM for Initial Video Restoration

	Experiment
	Implementation Details
	Evaluation
	Abalation Study
	Further Applications of UniVerse

	Conclusion & Limitation
	Acknowledgment
	More Details for Method
	Sorting Images for Sparse Trajectory.
	Sampling Implicit Views

	More Implementation Details
	More Visual Results

