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1. SFOASS vs OASS

Occlusion-Aware Seamless Segmentation (OASS), intro-
duced by [1], aims to address the issues of the narrow field
of view, occlusion of perspective, and domain gaps in a
seamless manner. As depicted in Fig. 1a, OASS requires the
model to transfer from a labeled pinhole domain to the un-
labeled panoramic domain, ultimately resulting in an OASS
model that performs effectively within the panoramic do-
main, thereby enabling 360° panoramic perception. In ad-
dition, this task introduces amodal-level prediction, which
means that the complete shape of the object needs to be
segmented regardless of whether the object is occluded or
not, in order to solve the problem of perspective occlu-
sion. The OASS task encompasses five distinct segmenta-
tion tasks at once: semantic segmentation, instance segmen-
tation, amodal instance segmentation, panoptic segmenta-
tion, and amodal panoptic segmentation.

Typically, the OASS model consists of a shared encoder
and three branches: a semantic branch, an instance branch,
and an amodal instance branch. As illustrated in Fig. 2,
during the training phase, the outputs of each branch are
supervised using the corresponding labels. During infer-
ence, in order to obtain all five segmentation maps (amodal
panoptic, panoptic, semantic, amodal instance, and instance
segmentation) in a single pass, the Occlusion-Aware Fusion
module [1] combines the pixel-level class predictions from
the semantic branch with the instance-level object predic-
tions from the two instance-level branches, generating the
final segmentation maps.

However, as a task based on Unsupervised Domain
Adaptation (UDA), OASS requires simultaneous access to
the data of both the source domain and the target domain
during the adaptation process. This presents challenges
in scenarios with data privacy and commercial restrictions,
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(a) Occlusion-Aware Seamless Segmentation (OASS).
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(b) Source-Free Occlusion-Aware Seamless Segmentation (SFOASS).

Figure 1. Comparison of Task Settings.

where sometimes the data of the source domain is usually
prohibited from being accessed. To address these limita-
tions, we further introduce Source-Free Occlusion-Aware
Seamless Segmentation (SFOASS), as depicted in Fig. 1b.
This more rigorous task extends the seamless segmentation
capabilities of OASS while imposing an additional restric-
tion: the source domain images and labels are inaccessi-
ble during domain adaptation. SFOASS relies solely on
a pre-trained OASS model from the pinhole domain and
unlabeled panoramic images from the target domain. The
absence of source domain data during adaptation presents
unique challenges, including the lack of explicit domain
alignment and the inability to directly address domain-
specific biases between the pre-trained source model and
unlabeled target images. As such, SFOASS requires the de-
velopment of innovative strategies to overcome these hur-
dles and ensure effective adaptation to the target domain.

To address these challenges, we propose UNconstrained
Learning Omni-Context Knowledge (UNLOCK) frame-
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Figure 2. Workflow of the training and inference phases of the
OASS model.

work, a novel framework that introduces Omni Pseudo-
Labeling Learning (OPLL) to leverage the knowledge em-
bedded in the pre-trained OASS model. At the same time, it
incorporates an Amodal-Driven Contextual Learning mech-
anism (ADCL) to capture the intrinsic knowledge of the tar-
get domain, ensuring effective occlusion-aware segmenta-
tion performance in the target panoramic domain.

2. Benchmarks

In this work, we applied two benchmarks to evaluate
the SFOASS task. These benchmarks are based on
three datasets: KITTI360-APS [3], AmodalSynthDrive [5],
and BlendPASS [1]. In accordance with the SFOASS
task formulation, both KITTI360-APS and AmodalSyn-
thDrive serve as source domains, with KITTI360-APS
consisting of real-world pinhole data and AmodalSyn-
thDrive consisting of synthetic pinhole data. Blend-
PASS serves as the target domain, composed of real-world
panoramic data. Consequently, two Pinhole-to-Panoramic
benchmarks are used: KITTI360-APS→BlendPASS and
AmodalSynthDrive→BlendPASS. The former constitutes a
Real-to-Real adaptation scenario, while the latter forms a
Synthetic-to-Real adaptation scenario.

For the KITTI360-APS→BlendPASS benchmark, the
annotated classes between the source and target domains
are not fully aligned. As detailed in [1], the annotations
of the BlendPASS dataset were pre-processed to match the
source domain, KITTI360-APS, resulting in 18 categories:
11 Stuff classes (road, sidewalk, building, wall, fence, pole,
traffic light, traffic sign, vegetation, terrain, and sky) and 7
Thing classes (car, pedestrians, cyclists, two-wheelers, van,
truck, and other vehicles).

For the newly introduced AmodalSynthDrive→ Blend-
PASS benchmark, the class annotations are consistent with
those of Cityscapes [2], with the exception that the Amodal-
SynthDrive dataset does not include the Bus class, which is
present in BlendPASS. To address this discrepancy, we re-

moved the Bus class from the annotations of BlendPASS,
resulting in 18 categories: 11 Stuff classes (road, sidewalk,
building, wall, fence, pole, lights, sign, vegetation, terrain,
and sky) and 7 Thing classes (person, rider, car, truck, bus,
motorcycle, and bicycle).

3. More Experiments Details
In the Amodal-Driven Contextual Learning (ADCL) of UN-
LOCK, only object samples with an overlapping area of the
object region that is less than half of the full area of the
object are stored in the amodal-driven object pool. This cri-
terion ensures that excessive contextual information about
the objects is not discarded under the spatial-aware mix-
ing strategy. During the object mixing process, the occlu-
sion order of pasted object samples is determined based on
the order in which they are applied. Specifically, the ob-
ject pasted later is placed in front of all previously pasted
objects in the mixed image. If an object is fully occluded
by other pasted objects, it is removed, as this scenario does
not require segmentation in the SFOASS task. In this sit-
uation, fully occluded objects are outside the scope of the
task, as they cannot be detected or even confirmed to ex-
ist, making their segmentation unnecessary for the objec-
tives of SFOASS. For the final mixed omni pseudo-labels,
semantic pseudo-labels are directly replaced by the seman-
tic labels of the pasted objects. For instance pseudo-labels
and amodal instance pseudo-labels, if the objects originally
present in the current image (before any pasting) are com-
pletely occluded by the pasted objects, the corresponding
instance-level pseudo-labels of those objects are removed
(since these objects are entirely occluded in the mixed im-
age after pasting). These operations are crucial to ensur-
ing that the images mixed by the ADCL strategy retain
reasonable contextual information. By carefully manag-
ing the occlusion and placement of objects, the proposed
ADCL approach helps the model learn diverse contextual
information, thereby facilitating adaptation to the unla-
beled panoramic data of the target domain. Both OPLL
and ADCL operate as data-level preprocessing strategies.
OPLL selects informative pseudo-labeled samples based
on object-level predictions, while ADCL manipulates ob-
ject placement and occlusion relationships through spatial-
aware mixing. These operations are designed to construct
more effective training data and guide the model to adapt
better to the unlabeled target domain without modifying the
model architecture itself.

For the reproduction of the 360SFUDA++[9], we repli-
cated the key innovations and extended the prototype-based
approach, initially applied to the semantic segmentation,
to the two instance-level branches commonly found in the
OASS model, ensuring that both instance branches benefit
from this technique. To ensure the robustness and reliabil-
ity of our reproduction, we strictly followed the original ex-



perimental setup. Through multiple rounds of experimen-
tation and fine-tuning, we determined the optimal config-
uration, achieving results that closely mirror those of the
original work. For the retraining of existing UDA meth-
ods [1, 4, 6, 8] on the AmodalSynthDrive→ BlendPASS
benchmark, we utilize the training protocols from [1] and
adhere to the hyperparameters specified in the respective
papers of each method. This approach ensures consistency
with the original experimental setups, allowing for a fair
comparison across the different methods.

4. Analysis for Hyper-parameters
In UNLOCK, OPLL serves as the key, and ADCL per-
forms the unlocking action. We specifically analyze the
effect of the hyperparameters in both OPLL and ADCL
on the KITTI360-APS→BlendPASS benchmark. For the
SFOASS task, performance is evaluated using five met-
rics: mAPQ for amodal panoramic segmentation, mPQ for
panoramic segmentation, mIoU for semantic segmentation,
mAAP for amodal instance segmentation, and mAP for in-
stance segmentation. Since these metrics do not always vary
consistently, we prioritize mAPQ, which evaluates amodal
panoramic segmentation (including both Stuff and amodal-
level Thing classes), while also taking into account the over-
all performance across all metrics. Furthermore, although
the three branches are designed to be independent, they
share the same encoder for feature extraction. As a result,
adjustments made to the hyperparameters of a single branch
will indirectly affect the other branches, thereby influencing
the performance across all metrics.

τfix τper mAPQ mPQ mIoU mAAP mAP
0.1 0.9 24.37 23.78 38.84 10.41 10.43
0.2 0.7 24.45 23.76 39.10 10.45 10.43
0.3 0.5 24.71 24.00 39.03 10.52 10.52
0.4 0.3 24.58 23.93 39.13 10.42 10.49
0.5 0.2 24.28 23.78 38.92 10.47 10.53

Table 1. Performance analysis of using different values for τfix

and τper in omni amodal instance pseudo-labels.

τfix mAPQ mPQ mIoU mAAP mAP
0.1 24.52 23.88 38.95 10.53 10.45
0.2 24.34 23.74 38.77 10.31 10.51
0.3 24.71 24.00 39.03 10.52 10.52
0.4 24.44 23.81 39.14 10.39 10.35
0.5 24.31 23.70 38.93 10.50 10.38

Table 2. Performance analysis of using different values for τfix in
omni amodal instance pseudo-labels.

OPLL. We systematically investigated the effects of these
two parameters τfix and τper on the omni pseudo-labels

τper mAPQ mPQ mIoU mAAP mAP
0.9 24.54 23.79 38.71 10.52 10.36
0.7 24.43 23.79 38.80 10.46 10.60
0.5 24.71 24.00 39.03 10.52 10.52
0.3 24.67 23.71 38.86 10.49 10.57
0.2 24.56 23.90 39.02 10.47 10.35

Table 3. Performance analysis of using different values for τper in
omni amodal instance pseudo-labels.

τfix τper mAPQ mPQ mIoU mAAP mAP
0.3 0.6 24.37 23.66 38.81 10.32 10.32
0.4 0.4 24.53 23.93 38.95 10.45 10.51
0.5 0.2 24.71 24.00 39.03 10.52 10.52
0.6 0.1 24.41 23.74 39.12 10.42 10.39
0.7 0.05 24.20 23.61 38.80 10.45 10.37

Table 4. Performance analysis of using different values for τfix

and τper in omni instance pseudo-labels.

τfix mAPQ mPQ mIoU mAAP mAP
0.3 24.06 23.50 38.60 10.28 10.39
0.4 24.20 23.52 38.65 10.22 10.43
0.5 24.71 24.00 39.03 10.52 10.52
0.6 24.54 23.89 39.20 10.46 10.37
0.7 24.12 23.47 38.69 10.21 10.44

Table 5. Performance analysis of using different values for τfix in
omni instance pseudo-labels.

τper mAPQ mPQ mIoU mAAP mAP
0.6 24.15 23.51 38.71 10.35 10.46
0.4 24.46 23.60 38.97 10.27 10.31
0.2 24.71 24.00 39.03 10.52 10.52
0.1 24.36 23.79 38.91 10.49 10.41

0.05 24.27 23.59 38.87 10.25 10.43

Table 6. Performance analysis of using different values for τper in
omni instance pseudo-labels.

τfix τper mAPQ mPQ mIoU mAAP mAP
0.3 0.9 24.53 23.96 39.01 10.46 10.37
0.4 0.85 24.31 23.73 39.02 10.41 10.39
0.5 0.8 24.71 24.00 39.03 10.52 10.52
0.6 0.7 24.33 23.56 39.05 10.25 10.58
0.7 0.6 24.34 23.52 38.95 10.28 10.47

Table 7. Performance analysis of using different values for τfix

and τper in omni semantic pseudo-labels.

from the amodal instance branch, the instance branch, and
the semantic branch. Each experiment focuses solely on
OPLL to clearly evaluate its individual contribution. As
shown in Tables 1, 4, and 7, only the two thresholds as-
sociated with the branch under investigation were varied,
while the thresholds for the other branches were held con-



τfix mAPQ mPQ mIoU mAAP mAP
0.3 24.43 23.62 39.01 10.29 10.48
0.4 24.52 23.87 38.99 10.47 10.37
0.5 24.71 24.00 39.03 10.52 10.52
0.6 24.46 23.81 39.05 10.44 10.63
0.7 24.62 23.94 38.97 10.48 10.38

Table 8. Performance analysis of using different values for τfix in
omni semantic pseudo-labels.

τper mAPQ mPQ mIoU mAAP mAP
0.9 24.30 23.67 38.88 10.37 10.38

0.85 24.40 23.72 38.99 10.42 10.59
0.8 24.71 24.00 39.03 10.52 10.52
0.7 24.44 23.79 39.02 10.42 10.37
0.6 24.29 23.7 39.01 10.41 10.37

Table 9. Performance analysis of using different values for τper in
omni semantic pseudo-labels.

stant at their final adopted values, as indicated by the gray
background in the tables. Additionally, another set of ex-
periments was conducted to examine the effect of varying
individual thresholds, where one threshold was altered at
a time while the others remained fixed, as shown in Ta-
bles 2, 3, 5, 6, 8, and 9. Overall, the performance results
across the three tables demonstrate that our method exhibits
low sensitivity to these hyperparameters. This robustness
can be attributed to two aspects: (1) the omni pseudo-labels,
which incorporate knowledge from all predictions while ex-
cluding low-quality predictions in the optimization process,
and (2) the class-wise self-adjusting threshold mechanism,
which dynamically maintains a balance between the num-
ber and accuracy of the generated labels for each class. For
the amodal instance shown in Table 1, we observed that dif-
ferent values have a relatively minor impact on the mAP
and mAAP of the instance-level branch. This is because
the amodal instance branch focuses more on the true shape
of the object and is less dependent on its appearance fea-
tures. As shown in Tables 2 and 3, the increase in sample
numbers due to lower thresholds or higher percentages im-
proves the mAAP or mAP values. However, this increase
in samples also slightly affects the accuracy of the stuff cat-
egory, leading to a decrease in other metrics. For instance
pseudo-labels, we observed that excessively low thresholds
(as shown in the first row of Table 4 and 5) negatively af-
fect the mAP and mAAP metrics. Lower thresholds lead to
the inclusion of incorrect segmentation of the unoccluded
regions of objects, which impairs the model’s ability to cor-
rectly understand the scene. For the semantic pseudo-labels,
a higher threshold (as shown in the last row of Table 7) can
improve the accuracy of semantic labels. However, this also
filters out more low-confidence pixels, which reduces the
model’s ability to capture rich contextual semantic infor-
mation, ultimately leading to decreased performance. As

shown in Table 9, although a higher percentage introduces
more pixels, the noise labels it brings also lead to a decrease
in performance.

τ ′fix τ ′per mAPQ mPQ mIoU mAAP mAP
0.99 0.05 24.80 24.00 38.57 10.47 10.68
0.95 0.10 24.95 24.05 39.62 10.84 11.25
0.90 0.15 25.84 24.55 40.31 10.93 11.47
0.85 0.20 25.74 24.55 39.27 10.81 11.20
0.80 0.30 25.39 24.39 39.23 10.62 10.91

Table 10. Performance analysis of varying thresholds τ ′fix, τ ′per

for amodal-driven object pool of ADCL.

R mAPQ mPQ mIoU mAAP mAP
5 24.83 24.02 39.19 10.44 10.78
8 25.34 24.42 39.24 10.51 10.67

10 25.84 24.55 40.29 10.93 11.47
12 25.34 24.49 40.30 10.85 11.25
15 25.40 24.47 39.05 10.70 10.76

Table 11. Performance analysis of using different numbers R of
object samples in ADCL.

ADCL. We further analyzed the parameters τ ′fix and
τ ′per, which control the quality of generated objects in
the amodal-driven object pool, as well as the parame-
ter R, which determines the number of objects pasted in
the spatial-aware mixing strategy. These experiments are
conducted independently of OPLL to isolate the effect of
ADCL. As shown in Table 10, excessively low thresholds
lead to a decline in object quality, resulting in the inclusion
of background information or incomplete object shapes.
Conversely, high thresholds improve the quality of individ-
ual objects but reduce the diversity of objects in the pool.
For the number R of pasted objects, as shown in Table 11,
too few objects limit the variety available for model train-
ing, while an overly large number results in overcrowding,
which may obscure important contextual information from
the Stuff class, thereby hindering the model’s ability to cap-
ture the broader scene context.

5. More Visualization Results

5.1. More Visualization Results on SFOASS

As shown in Fig. 3, we further compare our proposed
UNLOCK with existing UDA methods [1, 4, 6, 8] on
KITTI360-APS→BlendPASS benchmark. The results
demonstrate that, even without access to source domain im-
ages and labels, UNLOCK achieves comparable, or even
surpassing, UDA methods. For example, in the middle col-
umn of Fig. 3, UNLOCK detects more cars accurately com-
pared to UnmaskFormer [1]. In the right column, UNLOCK
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Figure 3. Visualization for Amodal Panoptic Segmentation on KITTI360-APS→BlendPASS benchmark. From top to bottom are (a)
Image, (b) GT, (c) DATR [8], (d) Trans4PASS [6], (e) EDAPS [4], (f) UnmaskFormer [1], (g) Source-only, (h) 360SFUDA++ [9], and (i)
UNLOCK (Ours).

excels in identifying and segmenting pedestrians, a result at-
tributed to the designed ADCL method, which facilitates the
learning of diverse object samples of the Thing class. We
also provided the visualization results for amodal panoptic
segmentation on AmodalSynthDrive→BlendPASS bench-
mark, as shown in Fig. 4. UNLOCK demonstrates excep-
tional segmentation performance, particularly when deal-
ing with a high density of Car class. Our method identi-
fies more cars with accurate shapes compared to other ap-
proaches. This successful adaptation from virtual to real en-
vironments not only demonstrates the robustness and gen-
eralization of our method but also provides a viable path for
applying these advancements in real-world scenarios.

We also provide the visualization results of semantic seg-
mentation and panoptic segmentation, as shown in Fig. 5. In
the left part of Fig. 5, UNLOCK demonstrates superior per-
formance in handling the Stuff class. For example, while
many UDA methods misidentify elements like billboards
on buildings as Traffic Sign class, UNLOCK correctly dis-
tinguishes these as Building class. In addition, as shown
in the right part of Fig. 5, UNLOCK excels in the panop-
tic segmentation task, detecting more objects and providing
more accurate predictions for each object’s visible region
compared to other methods (as seen in the third column).

5.2. Failure Case of UNLOCK

Figure 6 illustrates a failure case where vehicles are oc-
cluded by sparse fences, leading UNLOCK to miss their
presence. Although the vehicles remain partially visible
through the gaps, the repetitive vertical patterns of the fence
interfere with the visual cues, making it challenging for the
model to distinguish the objects from the background. This
highlights a limitation of UNLOCK in dealing with struc-
tured, non-dense occlusions that disrupt spatial continuity
and confuse contextual reasoning.

5.3. Qualitative analysis of ADCL

To ensure the reliability of the amodal-driven object pool,
we apply stricter adaptive thresholds to filter out high-
quality object samples. As shown in Fig.7, we visual-
ize examples from two training images, with the selected
high-quality amodal instances highlighted. For instance,
the pedestrian in the first column of Fig.7 shows accurate
segmentation with clear boundaries, while the car in the
second column retains a reasonable and complete amodal
shape despite being partially occluded by surrounding ob-
jects. These results demonstrate that the filtered object pool
provides reliable samples, which in turn benefit the spatial-
aware mixing strategy in ADCL.
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Figure 6. Example of a failure case where UNLOCK misses vehicles partially occluded by sparse fences.

Figure 7. Example of a failure case where UNLOCK misses vehicles partially occluded by sparse fences.

6. Discussion

6.1. Limitations and potential solutions

The 360° boundaries of panoramic images remain an under-
explored aspect in the field of seamless segmentation, pos-
ing challenges for accurate perception at extreme viewing
angles. Additionally, the interaction between the instance
and amodal instance segmentation branches requires further
investigation to fully leverage their complementary infor-
mation.

Future research could explore strategies to mitigate label
scarcity in the panoramic domain by incorporating semi-
supervised learning techniques into amodal instance seg-
mentation. Moreover, enhancing model robustness and gen-
eralizability across diverse panoramic environments could
be achieved through domain generalization approaches, en-
abling improved adaptation to unseen real-world condi-
tions.

In addition, the scalability of the proposed framework
with respect to the number of object categories and the com-
plexity of occlusion relationships remains a potential limi-
tation. Since panoramic scenes often contain numerous in-
stances with intricate occlusions, future work should further
evaluate and improve the framework’s performance in such
large-scale, dense scenarios.

6.2. Societal Impacts

On the positive side, SFOASS enhances privacy handling
by eliminating the need for access to source-domain im-
ages and labels during target-domain adaptation, safeguard-
ing sensitive data. It also facilitates commercial deployment
by mitigating data ownership restrictions. Additionally, by
relying on a pre-trained model and unlabeled target-domain
data, SFOASS helps avoid storage issues related to large
training datasets, leading to more efficient resource utiliza-
tion and supporting sustainable technological development.

However, challenges remain in handling heavily oc-
cluded objects and domain gaps, which may lead to mis-

classifications or biased predictions. In safety-critical appli-
cations like autonomous vehicles, such errors could result in
accidents. Furthermore, the reliance on pre-trained models
without access to source data can limit the adaptability of
the system in unfamiliar environments, particularly when
the target domain differs significantly from the conditions
seen during training. This could lead to reduced robustness
and performance in real-world scenarios, highlighting the
need for ongoing validation and refinement.

Therefore, while SFOASS offers promising advance-
ments, its deployment must be carefully managed to miti-
gate risks and ensure its robustness in real-world scenarios.
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