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A. Method

In this section, we first introduce the overall process of our
proposed VideoMiner. Subsequently, we provide a detailed
description of the proposed T-GRPO procedure. Through
this structure, we aim to offer a comprehensive understand-
ing of the VideoMiner’s functionality and the operational
mechanisms of T-GRPO.

A.1. Workflow of the proposed VideoMiner

The proposed VideoMiner consists of three main com-
ponents: scene segmentation and caption generation, T-
GRPO-based tree exploration, and reasoning using a large
language model (LLM). The input long video is temporally
segmented into events, which are then processed by a vi-
sion language model (VLM) to generate captions based on
a given question. We perform clustering on the generated
captions, treating each cluster as a tree node. The policy
model within T-GRPO determines whether a node should
continue to expand. If further expansion is deemed neces-
sary, the node undergoes an iterative process that includes
segmentation, caption generation, and clustering to create
new child nodes. This iterative process continues until the
policy model identifies all key frames. Finally, the captions
of the key frames, along with the original question, are in-
put into the VLM to perform reasoning and provide the final
answer.

A.1.1. Event Segmentation

Hour-long videos contain a vast amount of redundant in-
formation that is unrelated to the given question. To miti-
gate the complexity of long videos and form a hierarchical
structure, we first apply uniform sampling and segment the
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video based on distinct scenes. By adaptively segmenting
the video at the event level rather than using discrete frames,
we effectively preserve temporal coherence, minimizing the
disruption of temporal information during both the segmen-
tation and subsequent clustering processes. We formulate
the complete process below.

A long video, after uniform sampling into N frames,
can be represented as a set ; = {f1,..., ft,..., fn}. In
this process, each frame f; is represented by a normalized
grayscale histogram, capturing the distribution of intensity
levels within the image and providing essential informa-
tion about the content. The calculation of the normalized
grayscale histogram for frame f; is given by:

1 W H
Hi(k) = 5 D > 0 (gray(fii, ) = k), (D)

i=1j=1

where H;(k) denotes the normalized histogram value at
grayscale level k, W x H represents the resolution of the
image (its width W and height H), and gray(f:(i, 7)) sig-
nifies the grayscale intensity at coordinate (7, j) in frame ¢.
The Kronecker delta function () is defined as:
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This means the calculated grayscale value contributes to
the histogram only when it matches the current grayscale
level k. To quantify the similarity between frames, we em-
ploy the Bhattacharyya distance between consecutive his-
togram distributions, which measures the similarity of two
probability distributions. The constructed similarity se-
quence can be expressed as:
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where H,;(k) and H,.i(k) represent the normalized
grayscale histograms of frames ¢ and ¢ + 1, respectively.
By calculating the Bhattacharyya distance D; between ad-
jacent frames, we can identify changes in video content,
providing a basis for subsequent scene segmentation. The
segmentation threshold 7 is determined by selecting the top
K — 1 largest change points from the calculated distances
D;, which reflect significant differences between scenes.
Let Dgoreq be the sorted array of distances, then the seg-
mentation points p,,, can be expressed as:

pm = argmax(Dgorea[m]), m=1,... . K —1. (4)

Once the corresponding segmentation  points
{p1,...,px—1} are identified, we obtain the scene
partitions:

{fla"'7fp1} m=1
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In this equation, F,,, denotes the m-th scene, and the parti-
tions delineate the segments of the video based on identified
change points. After scene segmentation, the input long
video F; is effectively partitioned into K distinct scenes
E = {Ei,...,Ex}. This segmentation provides a cru-
cial foundation for subsequent video analysis, processing,
and understanding, enabling a better grasp of the structure
and dynamics of video content. Furthermore, the effective-
ness of this segmentation can be validated by analyzing the
histogram distributions and their corresponding distances,
ensuring that the identified scenes accurately reflect the un-
derlying content changes in the video. This methodology
enhances the capability to process long videos and facili-
tates a structured approach to content analysis, leading to
improved insights and applications in various domains.

E,, =

A.1.2. Caption Generation and Clustering

Each event consists of a continuous sequence of frames,
which construct a specific video segment. To better cap-
ture specific information relevant to the user-provided ques-
tion () and improve clustering efficiency, we utilize a Vi-
sual Language Model (VLM). This model processes video
content and generates relevant textual descriptions, thereby
producing captions for each event. The caption for the m-th
event is defined as follows:

Caption,, = VLM(E,,,Q), m=1,...,K, (6)

where F,, represents the sequence of frames for the m-th
event, and @ is the question posed by the user. This means
that the VLM takes both the event frames and the user ques-
tion as inputs to generate a contextually relevant caption.
The generated captions not only reflect the main content of
the events but also directly relate to the user’s needs, en-
suring the relevance and accuracy of the information. To

transform a long video into a hierarchical tree structure,
it is essential to effectively cluster the events to form tree
nodes. First, each textual description Caption,, is mapped
to a vector representation using an embedding model. This
conversion process transforms the textual information into
a numerical format suitable for analysis:

v, = Embedding(Caption,,, ), @)

where v,, is the vector representation of the m-th cap-
tion. The extracted embeddings form a feature matrix
V € RE*d where d is the dimension of the embedding
vectors:

V= . ®)

This feature matrix allows us to compare and analyze the
similarities among different events in a higher-dimensional
space. Next, we apply a density-based clustering algo-
rithm, DBSCAN, to group the K sub-scenes into C' seman-
tic events that exhibit similar characteristics. The clustering
process can be expressed as:

DBSCAN
R
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In this equation, ¢ denotes the neighborhood radius, defin-
ing the range of each point’s neighborhood, while minPts
signifies the minimum density threshold, ensuring that each
cluster contains at least a specified number of points. The
result is that C' clusters are formed such that C < K, en-
suring that semantically related scenes are grouped together
to form higher-level structural nodes within the tree. This
clustering method not only enhances the efficiency of anal-
ysis, but also aids in achieving a clearer understanding of
the structural organization of video content. By system-
atically organizing and categorizing events, we can better
extract valuable information from the video data, thereby
providing users with more precise services and experiences.
This organized approach facilitates subsequent processing
and analysis, ensuring that the information derived from the
video is both relevant and actionable.

A.1.3. Tree Exploration

After segmentation, caption, and clustering to form tree
nodes N, the policy model in our proposed T-GRPO de-
cides which nodes can iteratively expand into new nodes.
As the tree grows, the long video is decomposed into a hier-
archical structure, progressing from coarse to fine, where a
deeper layer of the tree contains more fine-grained informa-
tion. The action of the policy model includes three states:
accept, continue, and delete. Specifically, Accept indicates
that the node contains sufficient key frames to answer the



question, requiring no further exploration. Continue sug-
gests that the node may be relevant to the query and should
be further expanded to new nodes for deeper exploration.
Delete signifies that the node is irrelevant to the question
and can be discarded without further expansion.

As the core component, the PM policy model determines
the tree growth process, which is designed based on three
aspects: spatio-temporal information integration, question-
oriented, and structural adaptability. Following the three de-
sign principles, the policy model takes three inputs: event
captions Caption,,, the user question Q, and node depth
depth(N;). The output of the policy model State(N;) can
be represented as:

State(N;) = PM(Caption,,,, Q, depth(XV;)). (10)

The event captions preserve the temporal continuity of
the original long video, while the question-driven captions
reflect spatial information. Incorporating the question en-
sures that the model’s decision-making remains closely
aligned with the user’s intention. The depth of the node pro-
vides positional information within the hierarchical struc-
ture. In Section 3.2, we introduce the concept of tree auxin
to regulate excessive exploration, thus enhancing the accu-
racy and efficiency of localization.

All nodes with the state of accept represent the selected
key frames. These key frames are collected and, along
with the user’s question, are fed into the VLM for infer-
ence to generate the final result. This exploration of the
tree structure not only enhances the efficiency of video
analysis but also enables users to access content relevant
to their queries rapidly. By managing the complexity of
long videos through this hierarchical approach, users ben-
efit from a more precise and efficient experience when
conducting information retrieval. Ultimately, the policy
model, through intelligent node management and a dynamic
decision-making process, ensures the in-depth excavation
and effective utilization of video content.

A.2. Tree-Based Group Relative Policy Optimiza-
tion

In modern reinforcement learning, particularly within the
context of Proximal Policy Optimization (PPO), value func-
tion approximation is a critical step. Traditional methods
necessitate additional computational resources to accurately
estimate the value function. However, T-GRPO mitigates
the reliance on substantial computational resources by in-
troducing the concept of average rewards. By leveraging
the average across multiple sampled outputs, we can sig-
nificantly reduce resource consumption during the training
process while maintaining performance.

In the design of T-GRPO, we specifically consider the
adaptation to tree structures. Tree structures offer inher-
ent advantages in handling complex data, such as video un-

derstanding; therefore, our policy model is designed to ac-
commodate this structure. The inputs include not only the
query q but also task-relevant captions and the depth of the
tree. This design enables the model to generate multiple
trees, each capable of independently addressing different
task nodes, thereby enhancing overall processing efficiency.

Simultaneously, the design of the reward function has
been carefully considered. We decompose the original re-
ward function into node-level and tree-level components,
allowing the model to receive reward feedback at different
hierarchical levels. Node-level rewards focus on the outputs
of individual intermediate nodes, while tree-level rewards
assess the final output of the entire tree. This hierarchical
reward mechanism facilitates the model’s ability to learn
distinct features and decision-making processes at various
levels, thereby excelling in complex tasks such as video un-
derstanding.

In the following sections, we will provide a detailed ex-
planation of the rollout process, reward design, and loss
function formulation for T-GRPO, aiding readers in com-
prehensively understanding the specific implementation and
advantages of this innovative approach. Through these de-
signs, we aim to achieve greater efficiency and effectiveness
in the application of reinforcement learning.

Rollout Process As illustrated in Figure 3, we first em-
ploy the proposed VideoMiner process to perform a rollout,
generating n distinct trees T’ = {fl, T ,fn} Each
tree T is defined as T, = {0i1,...,04j,...,0;g,}, where
G; represents the total number of nodes within tree 7;. The
output O;; signifies the decision made by the policy model
regarding the j-th node in tree 75, specifically determining
whether this node qualifies as a key frame.

From the outputs O;;, we can derive several critical com-
ponents: the output format f,, which specifies the struc-
ture of the output generated by the model; the complement
length [,, which indicates the duration or extent of addi-
tional information needed to complete the output; and the
action decisions a,, which are the specific actions proposed
by the model based on the analysis of the node. Each of
these elements plays a vital role in the overall functionality
of the model, contributing to its ability to effectively pro-
cess and interpret video data. The nuanced extraction of
these outputs allows for a comprehensive understanding of
the model’s decision-making process at each node, facili-
tating improved performance in tasks such as video under-
standing and key frame selection.

Reward Design To guide the policy model in making
more structured, detailed, and accurate key-frame deci-
sions, we design two types of rewards for each node. The
first type is the node-level reward R,,,4., Which evaluates
the quality of individual node decisions, while the second



type is the tree-level reward Ry,.., reflecting the correct-

ness of the final tree-level outcome. The node-level reward

R,104e 1s further subdivided into three components: a format

reward, which is independent of the final output yet ensures

structural consistency, and both length and action rewards,

which directly influence the accuracy of the final result.
The format reward can be expressed as:

rformat(fo) = Omaz * Imax + Ocorr * Teorrs 11

where I is an indicate function. The term corresponding
to Imax indicates full compliance with the required format,
resulting in a reward of d,,,4,. Conversely, the term repre-
sented by .. signifies partial compliance, wherein the for-
mat is still deemed sufficient for correct extraction, yield-
ing a reward of d.o;,. This structure ensures that rewards
are allocated based on the adherence to expected formatting
standards. The completion length reward is formulated as:

lo —1;)?
Tlength(lo) = PeXP<—(t)> . (12)
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In this equation, [/, represents the length of the generated
response in tokens, while [; denotes the length of the tar-
get token. The parameter o regulates the smoothness of
the reward curve, while p functions as a scaling factor. By
modeling the reward with a Gaussian distribution, we effec-
tively control the target token length of the response, pro-
moting outputs that are closer to the desired length. Empiri-
cal observations indicate that an increase in response length
correlates positively with overall performance. The action
reward is articulated as follows:

Taction(ao) =04 ]I{”delete”an} +dq H{”accepl”an} +
de H{”continue”EaD}- (13)

In this formulation, d,4, d,, and J. denote the reward values
assigned to the actions “delete,” ”accept,” and “continue,’
respectively. The reward for the “delete” action is the high-
est, followed by “accept,” which receives a slightly lower
reward, while “continue” garners the lowest reward among
the three. This hierarchy reflects the importance of decisive
actions in the decision-making process of the node. To fur-
ther enhance the growth regulation of the tree structure, we
define an auxiliary growth factor:

0q + 0q
i = ————— 14
AGU‘LZTL 2§c ( )

This growth factor, inspired by the plant hormone auxin,
serves to adaptively regulate tree expansion. By moderat-
ing the growth of the tree, we aim to enhance localization
efficiency, ensuring that the model maintains focus on the
most relevant decision paths. Among the three reward com-
ponents, Tiength and Tacion have a direct impact on the effec-
tiveness of the final decision. Consequently, we compute

the total reward for the policy model output utilizing the
following equation:

Rtotal = T format + (Tlength + raction) : Rtree- (15)

This design ensures that the model incorporates both the
correctness of the final decision and the control of response
length and action selection. By adjusting the growth factor
Aquzin, the model is incentivized to favor the “accept” and
”delete” actions when appropriate, ultimately enhancing ef-
ficiency while preserving decision accuracy. This com-
prehensive reward structure allows the model to refine its
performance through continuous learning and adaptation to
complex decision-making scenarios.

Loss Function. The total reward r;; collected at each
node (i, j) serves as the foundation for computing the group
advantage A;;, which quantifies how much better or worse
a specific node performs relative to the average node in the
entire hierarchical tree. To normalize this comparison, we
standardize each node’s reward by subtracting the mean re-
ward over all nodes and dividing by the corresponding stan-
dard deviation:

- T'nG, })
TG, })

A" _ rij — mean({rn, r12,..
Y std({ri1,712, ..

(16)

Here, 7;; is the total reward at node (i,j), reflecting
the combined node-level and tree-level feedback, and
mean({-}) and std({-}) compute the empirical mean
and standard deviation over all sampled node rewards
11,712, - -5 TnG, . Where nG,, denotes the total number
of nodes across n trees. Once A;; is obtained, the policy
model is updated by minimizing a surrogate loss function
that aggregates contributions from every node while includ-
ing a KL-divergence penalty to constrain policy shifts:

Jr—arpro(0)
= E[q ~ P(Q), {Oij} i=1,...G ™~ ﬂ—eold(0|q)]
7j=1,...,N;
1 n G
lm ;; (Advij - BDKL(W9||WTef)>1 , (17

where q is the current input (e.g., the user’s question), sam-
pled from distribution P(Q), and {o;;} are the node out-
puts (accept/continue/delete decisions) drawn according to
the old policy my,_,,. The clipped advantage term Adv;; is
defined as the product of the normalized advantage and the
policy probability ratio, with clipping applied to limit large



updates:

AdVZ'j = min 77(-9 (Oij | q) Aija
TOo1a (Oij | Q)

clip (M 1—e1+ e) Am‘>a (18)

G014 (Oij | q

where clip() is a function that restricts the policy ratio
within a trust region [1 — ¢, 1 + €], thereby preventing overly
aggressive policy updates and avoiding policy collapse. By
taking the minimum of the unclipped and clipped objec-
tives, Adv;; aligns with the PPO-style surrogate objective,
ensuring stable yet effective optimization. The loss function
Jr.crpo(0) thus jointly promotes node-level performance
improvements while regularizing the policy shift across the
hierarchical structure, enabling efficient and robust policy
learning over complex tree-structured outputs.

B. Sample Response of the Policy Model

Sample 1: Question:What can be deduced about c’s level
of expertise in the task by observing the kind of adjust-
ments made throughout the video? Response: <think>The
node caption describes C measuring wood on the floor us-
ing a tape measure while wearing a construction uniform
and focusing on the task. This indicates some level of ex-
pertise since C pays attention to detail (carefully measur-
ing) and appears prepared (wearing proper attire). How-
ever, this single instance doesn’t provide enough context
to determine whether C makes frequent adjustments else-
where in the video or completes tasks efficiently over-
all. Therefore, while informative, this particular scene
isn’t sufficient on its own to conclusively identify C’s
exact proficiency level across all aspects of woodwork-
ing. </think> <action>continue </action>

Sample 2: Question:What is the overall purpose of c’s ac-
tions in this video? how do the actions of the man contribute
to this purpose? Response: <think>Considering the global
caption and node caption, they both describe a scenario
where a man is playing dominoes, which aligns closely with
option E. There’s no indication of building towers (A), solv-
ing puzzles (B), creating artwork (C), or teaching someone
how to play dominoes specifically (D). Since the primary
activity mentioned is playing dominoes, and the man’s ac-
tions continue uninterrupted despite the other person look-
ing at their phone, option E seems most fitting. Therefore,
since our focus is clearly on the game of dominoes played
between two individuals, we can conclude that the current
node adequately addresses part of the query without requir-
ing additional details. </think> <action>stop</action>
Sample 3: Question:Describe the overall goal achieved
by c throughout the video and explain how the vari-
ous trowels were used in working with the cement cast.

Response: <think>Given the global caption describes C
working on a cement cast and using trowels to smooth the
cement, it aligns closely with option D where C is smooth-
ing the cement cast with a flooring trowel and a bucket
trowel. However, the primary focus seems to be on demon-
strating the process rather than just describing an action like
smoothing alone. Since our main goal here involves under-
standing both the overarching objective (demonstrating the
process) and the usage specifics of the trowels, we cannot
solely conclude based on just one aspect. Therefore, while
some elements point towards stopping due to clear indica-
tion of tool usage, the broader instructional context suggests
ongoing relevance.</think><action>continue</action>

Sample 4: Question:In the process of creating the final
dough piece, can you identify three main stages that c
goes through, and explain how her methods and techniques
change during each stage? Response:<think>The global
caption describes the initial steps where C mixes ingredi-
ents and shapes the dough into balls. However, the question
asks about three main stages including changes in meth-
ods and techniques throughout the process. Given the cur-
rent node description focuses solely on mixing and shaping
without detailing subsequent stages like kneading or rising,
it seems insufficient to fully address the query posed. There-
fore, while some relevance exists due to overlapping early
actions, more comprehensive coverage is required for an ac-
curate response.</think > <action>continue </action>

Sample 5: Question:What was the primary tool used by
¢ in the video, and how did c utilize this tool in order
to create a desired outcome? Response:<think>Given
the global caption clearly states that the primary tool used
by C is a rake, and all actions described involve us-
ing a rake—leveling soil, creating a smooth surface, re-
moving debris—it aligns perfectly with option A. Since
every detail fits without needing additional information,
we can conclude that no further investigation is re-
quired. </think> <action>stop</action>

Sample 6: Question:Describe the overall goal achieved
by c throughout the video and explain how the vari-
ous trowels were used in working with the cement cast.
Response: <think>Given the global caption describes C
working on a cement cast and using trowels to smooth the
cement, it aligns closely with option D where C is smooth-
ing the cement cast with a flooring trowel and a bucket
trowel. However, the primary focus seems to be on demon-
strating the process rather than just describing an action like
smoothing alone. Since our main goal here involves under-
standing both the overarching objective (demonstrating the
process) and the usage specifics of the trowels, we cannot
solely conclude based on just one aspect. Therefore, while
some elements point towards stopping due to clear indica-
tion of tool usage, the broader instructional context suggests
ongoing relevance.</think><action>continue </action>



Sample 7: Question:In the process of creating the final
dough piece, can you identify three main stages that c
goes through, and explain how her methods and techniques
change during each stage? Response:<think>The global
caption describes the initial steps where C mixes ingredi-
ents and shapes the dough into balls. However, the question
asks about three main stages including changes in meth-
ods and techniques throughout the process. Given the cur-
rent node description focuses solely on mixing and shaping
without detailing subsequent stages like kneading or rising,
it seems insufficient to fully address the query posed. There-
fore, while some relevance exists due to overlapping early
actions, more comprehensive coverage is required for an ac-
curate response.</think > <action>continue </action>
Sample 8: Question:What was the primary tool used by
¢ in the video, and how did c utilize this tool in order
to create a desired outcome? Response:<think>Given
the global caption clearly states that the primary tool used
by C is a rake, and all actions described involve us-
ing a rake—leveling soil, creating a smooth surface, re-
moving debris—it aligns perfectly with option A. Since
every detail fits without needing additional information,
we can conclude that no further investigation is re-
quired. </think><action>stop</action>

Sample 9: Question:What is the primary focus of ac-
tivity in the video and how does interaction between c
and the child contribute to this? Response:<think>Given
the global caption and node caption, they both describe a
woman Kknitting a green sweater while seated on a ham-
mock. They also mention the woman’s hands working on
the yarn and the child’s presence adding warmth. How-
ever, none of the options provided match exactly what is
described. Option E mentions knitting a scarf which dif-
fers from the sweater mentioned. Therefore, since the exact
scenario isn’t aligned with any given choice, we might con-
sider stopping here because continuing would just repeat
similar details without addressing the mismatched options
effectively. </think> <action>stop</action>

Sample 10: Question:How does c interact with the camera
during the video and what might be the reason behind these
adjustments? Response: <think>The global caption men-
tions that throughout the video, C adjusts the camera several
times, which aligns with the question asking about how C
interacts with the camera. However, the specific details pro-
vided in the node caption do not directly address why these
adjustments were made (i.e., whether it was for a specific
perspective or clarity). Given the options given, none ex-
plicitly state this either. Since the primary focus here seems
to revolve around understanding the motivations behind ad-
justing the camera angles rather than describing every single
action taken while doing so, we cannot conclusively say the
current node fully addresses our query without additional
context.</think><action>continue</action>
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