
Privacy-centric Deep Motion Retargeting for Anonymization of Skeleton-Based
Motion Visualization (Supplementary Materials)

S1. Implementation Details
Our model was implemented in PyTorch and experiments
were conducted on a server with two NVIDIA GeForce
RTX 3090’s and an AMD Threadripper 3960x CPU (64 GB
RAM). We utilize the Adam optimizer for the auto-encoder
portion, the embedding classifiers, and the discriminator.
The PMR models boasts an inference time is 0.006s for 75
frames (∼2.5s) of motion video. The training complexity
is ∼ 1.5× that of the DMR model due to the adversar-
ial/cooperative learning components. The final model took
6.5 hours to train.

S1.1. Model Architecture
Table S1 shows our PyTorch implementation of the en-
coders, decoder, embedding classifiers, and the quality con-
troller, where the acronyms are explained in Table S2. The
embeddings size is (256, 32).

S1.2. Training Stages
Table S3 details the epochs and stages of training. Initial
pre-training primes the models briefly. The first two stages
utilize paired and unpaired data for embedding separation.
The next two stages ready the embedding classifiers for it-
erative cooperative and adversarial training. In the unpaired
stage, the model is learning how motion data works and
learns how to break down and reconstruct the skeletons.
Most of the emphasis is put on the paired training, where
the motion retargeting is fine-tuned.

S1.3. DMR Baseline Implementation
Since the original DMR was designed for animation
datasets (e.g., Mixamo), we adapted it for real-world cap-
ture data:
• Re-implemented the character-agnostic variant following

official code
• Added loss components from the skeleton-aware variant

to handle NTU’s noisy real-capture data
• Used same data preprocessing pipeline as PMR for fair

comparison
• Training hyperparameters: learning rate 0.001, batch size

64, 200 epochs

S2. Dataset Analysis

A major difference in our experiment versus those in stan-
dard motion retargeting is that our data is imperfect. Other
datasets like Mixamo, as used in PMR, are great for motion
retargeting training as all the actors complete actions in the
same way. Additionally, the data is created and not cap-
tured, leaving much less noise. In a real-world dataset, such
as NTU, actors complete the task how they would normally
do them. Environments could also be different, some may
be closer to the camera, some may complete the task faster
or slower. Identifiable information is captured in just the
way someone completes a task. The data has individualis-
tic ways the tasks are completed, which makes it perfect for
evaluating the privacy, but may have flaws in the retargeting.
This becomes especially notable in the cross-reconstruction
loss Lcross.

S3. Privacy-Utility Trade-off

Figure S1. Privacy-utility trade-off on NTU-60. The plot shows
re-identification accuracy (privacy risk) vs. action recognition ac-
curacy (utility). PMR achieves the best balance, positioned closest
to the lower-right corner (low privacy risk, high utility).

1



Name Layers k s p in/out

Encoder

C2D + LR + MP + RP2D 3x3 1 - 75/12
C2D + LR + MP + RP2D 3x3 1 - 12/24
C2D + LR + MP + RP2D 3x3 1 - 24/32
C2D + LR + MP + RP2D 3x3 1 - 32/256

Decoder

CT2D + LR + Up + RP2D 3x3 1 1 512/ 256
CT2D + LR + Up + RP2D 3x3 1 1 256/128
CT2D + LR + Up + RP2D 3x3 1 1 128/96
CT2D + LR + Up + RP2D 3x3 1 1 96/75

Embedding
Classifier

CT1D + BN + R 3 1 1 256/128
CT1D + BN + R 3 1 1 128/256

CT1D + BN + R + AP 3 1 1 256/512
FL + LR + R - - - 512/1024

LR + R - - - 1024/512
LR + R + SM - - - 512/Y

Quality
Controller

(Discriminator)

CT1D + LR + Up + RP1D 3 1 1 T/64
CT1D + LR + Up + RP1D 3 1 1 64/32
CT1D + LR + Up + RP1D 3 1 1 32/16
CT1D + LR + Up + RP1D 3 1 1 16/8

FL + LR + R - - - 80/32
LR + Sig - - - 32/1

Table S1. Model Implementations. k represents kernel size, s represents stride, and p represents padding.

Acronym Definition
C2D Convolutional 2D
CT2D/1D Convolutional Transpose 2D/1D
LR Leaky ReLU
R ReLU
Up Upsample
MP/AP Max/Average Pooling
RP/2D Reflection Pad/2D
MLP Multi-Layer Perceptron
BN Batch Normalization
Y Number of classes
FL Flatten
SM Softmax
Sig Sigmoid

Table S2. Definitions of Acronyms Used

Stage Paired Epochs
Pre-training the Auto-Encoder Yes 5
Pre-training the Auto-Encoder No 20
Pre-training the Embedding Classifiers Yes 20
Pre-training the Embedding Classifiers No 50
Unpaired No 100
Paired Training Yes 100

Table S3. Training stages used for final model

S4. Task Specific Metrics
In many deployment scenarios, one may only need to pre-
serve discriminative accuracy on certain critical actions,
rather than all classes. For example, healthcare or assisted
living might focus on fall detection. We therefore measure
per-class F1 on a subset of medically or safety-relevant ac-
tions from the NTU-60 dataset:
• Falling Down (A43),
• Staggering (A42),
• Chest Pain (A45),
• Headache (A44).

Method
Class-level F1

Falling Stagger Chest Pain Headache
Original 0.965 0.981 0.905 0.884
DMR 0.999 0.814 0.676 0.491
PMR (Ours) 0.974 0.981 0.905 0.884

Table S4. Per-class accuracy and F1 for selected medical-related
actions on NTU-60. PMR and DMR are reasonably close on these
key actions, while PMR drastically lowers re-ID (shown in the
main paper).

Table S4 shows that both PMR and DMR degrade per-
formance vs. the original skeleton (which is expected, since
retargeting can alter nuance). Nevertheless, PMR still
achieves fairly strong detection of these critical classes, at



only a modest cost in F1 relative to DMR. Meanwhile,
PMR’s re-ID remains below 8–10%, whereas DMR’s is
∼ 25%. In a safety-oriented application where privacy is
paramount, PMR offers a compelling balance.

S5. Visualizations
Figure S2 shows another example (“Type on a Keyboard”)
from NTU-60. Figure S3 shows the anonymization results
for the “Apply Cream on Hand” action from NTU-120. The
Moon paper was only trained on NTU60 and could not be
fairly tested for the “Apply Cream on Hand” action. Addi-
tionally, provided in the GitHub are GIF files demonstrating
the frame by frame movement. These GIFs are rendered in
30 fps to align with the capture rate from the NTU dataset.

S6. Embedding Classifier Accuracy
Figure S4 illustrates the privacy classifier’s accuracy on
training and validation on the primary training on the
NTU60 dataset. Red and green lines represent accuracy on
the privacy embedding, whereas blue and purple lines show
accuracy on the motion embedding. The aim is low per-
formance on the motion embedding, indicating minimal PII
presence.

Figure S5 displays the utility classifier’s accuracy in
training and validation on the primary training on the
NTU60 dataset. Here, red and green lines indicate accu-
racy on the motion embedding, focusing on the skeleton’s
utility. Blue and purple lines represent performance on the
privacy embedding. The goal is high accuracy on the mo-
tion embedding and low on the privacy embedding, ensur-
ing motion information exclusivity.



(a) Original RGB Video

(b) Original

(c) Dummy

(d) Dummy

(e) UNet

(f) ResNet

(g) DMR

(h) PMR

Figure S2. Example visualization: Actor 19 performing the ”Type on a Keyboard” action, cast to Actor 36. The PMR model attempts to
make the generated skeleton sit, while maintaining end-effector positioning.



(a) Original RGB Video

(b) Original

(c) Dummy RGB Video

(d) Dummy

(e) DMR

(f) PMR

Figure S3. Example visualization: Actor 61 performing the ”Apply Cream on Hand” action, cast to Actor 8. PMR makes the generated
skeleton sit and places arms similarly to that of the dummy, preserving the privacy of the original sequence.



Figure S4. Privacy Classifier Accuracy

Figure S5. Utility Classifier Accuracy


	Implementation Details
	Model Architecture
	Training Stages
	DMR Baseline Implementation

	Dataset Analysis
	Privacy-Utility Trade-off
	Task Specific Metrics
	Visualizations
	Embedding Classifier Accuracy

