
Appendix

A. Parametric CAD Sketches
We discuss additional details related to our dataset of para-
metric CAD sketches and constraint solver.

A.1. Background
Parametric CAD fundamentally relies on sketches as the ba-
sis for generating complex 3D geometries. Sketches are
formed from geometric primitives such as points, lines,
arcs, and circles. By imposing constraints (e.g., tangency,
perpendicularity, parallelism) and dimensions (e.g., linear,
angular, radial), these primitives become systematically in-
terlinked, preserving design intent through iterative modifi-
cations. A dedicated constraint solver manages this network
of relationships, using numerical methods to maintain con-
sistency and automatically adjust dependent elements when
any single parameter changes.

In Figure A.1, tangent constraints (blue) reference a line
and an arc, horizontal constraints (orange) reference two
lines, and linear dimensions (red) reference two points.
Such definitions encode both geometric relationships and
key measurements, allowing the solver to propagate updates
throughout the model. This approach reduces the need for
manual rework by ensuring that changing one dimension,
such as the distance between two points or the radius of an
arc, will automatically update the entire sketch. This allows
designers to iterate rapidly while maintaining the design in-
tent embedded in the sketch.

A.2. Constraint State Definitions
The formal characterization of sketch constraint states fol-
low Hoffman [? ? ]. Let a sketch be parameterized by
a set of geometric parameters P = {p1, . . . , pn} and de-
fined by a set of constraint equations C = {c1, . . . , cm}.
The Jacobian matrix JC = ∂C

∂P captures the local depen-
dency between parameters and constraints. A sketch is
fully-constrained (FC) if rank(JC) = n − r, where r
represents the residual rigid-body degrees of freedom. It
is under-constrained (UC) if rank(JC) < n − r, imply-
ing that at least one geometric parameter retains an uncon-
strained degree of freedom. It is over-constrained (OC)
if rank(JC) > n − r, indicating redundant or inconsistent
constraints, which may still yield a solvable configuration if
the constraints are algebraically consistent.

A.3. Unstable Sketch Definition
To evaluate whether a sketch remains geometrically stable
after constraint application, we introduce a metric that de-
tects significant shifts in the sketch geometry. Specifically,
we divide the sketch canvas into an n×n grid of spatial bins
as shown in Figure A.2. A sketch is deemed unstable if any
of its geometric entities move from their original bin to a

Concentric Concentric
Linear Dim

Tangent Horizontal Tangent

Tangent Tangent
Horizontal

Figure A.1. An example sketch illustrating how constraints and
dimensions reference geometric primitives such as points, lines,
arcs, and circles. A constraint solver enforces these relationships,
ensuring that a change in one parameter propagates consistently
throughout the sketch.

Input

Output 1

Output 2

Unstable
(bins=4)

Stable
(bins=4)

Point still in the same cell

Point moved to a different cell

Figure A.2. Visualization of stable versus unstable sketches using
a 4 × 4 grid. Sketches with all points remaining in the same cell
are considered stable (top), while those that move to a different
cell are marked unstable (bottom).

different bin after constraint solving. This condition implies
a meaningful deformation rather than minor numeric jitter.
Such instability may indicate poorly conditioned constraint
sets, where the solver resolves constraints by distorting the
geometry. We apply this rule to all generated outputs and
classify each sketch as either stable or unstable.

A.4. Fusion Sketch Representation

The Fusion 360 Gallery sketch format [? ] organizes
sketch elements into a hierarchical, structured representa-
tion, wherein a sketch is defined by a set of parametric ge-
ometric primitives and a set of explicit constraints between
those primitives. Each geometric primitive (line, arc, cir-
cle, point, etc.) is described by its intrinsic parameters (e.g.,
endpoint coordinates for a line, center and radius for a cir-
cle). Alongside the primitives, the sketch includes con-
straints (e.g., coincident points, perpendicular or parallel
lines) that impose geometric relationships to be satisfied si-



multaneously. These constraints serve to preserve design
intent: for instance, a coincidence constraint can lock the
endpoint of a line onto a circle’s circumference, or an equal-
length constraint can enforce that two segments remain the
same length.

Structuring the sketch with primitives and constraints
yields a rich, relational format rather than a flat draw-
ing. The representation can be viewed as a bipartite graph,
where primitive nodes carry geometric parameters and con-
straint edges specify relationships linking one or more prim-
itives.

A.5. Sketch Tokenization
Our tokenization of sketches defines a diverse vocabulary
of token types to represent the heterogeneous elements of
a sketch. There are distinct token categories for primitive
types, constraint and dimension types, and special mark-
ers (e.g., <SOS>, <EOS>, <PAD>). In our approach, con-
straint tokens, dimension tokens, and primitive reference
tokens are the primary outputs of the model. These to-
kens are strictly categorical, reflecting the discrete nature of
constraint types and their relationship to previously defined
primitives. For example, a perpendicular constraint might
be tokenized as (<PER>, <REF A>, <REF B>), where
<REF A> and <REF B> are reference tokens pointing to
two lines introduced earlier in the sequence.

While geometric primitives also contain continuous pa-
rameters (coordinates, radii, angles, etc.), these parame-
ters are not predicted by our model. Instead, they are
treated as input to inform constraint generation. To incor-
porate this information, each primitive’s continuous param-
eters are embedded in a separate stream of tokens for input
only. The generative process focuses on discrete constraints
and dimensions that reference the primitives, leaving nu-
meric values for dimensions to be resolved by the constraint
solver. This design choice leverages the solver’s robust ca-
pacity to converge on valid parameter assignments, allow-
ing the model to prioritize structural correctness and align-
ment with design objectives.

A.6. SketchGraphs Dataset
In addition to the main paper that describes how the Sketch-
Graphs dataset was filtered and converted, we provide addi-
tional details regarding the motivation and practical consid-
erations of each step are provided here. The primary goal of
these refinements is to produce a clean, representative sub-
set of sketches and ensure each example aligns with stan-
dard engineering constraints.

A.6.1. Data Preprocessing
In Table A.1 we list out the supported constraint and di-
mension types in Onshape terminology that we included in
the training data. Notably, we filter out less prevelant con-
straints (Symmetric, Normal, Pattern) and dimen-

sions (CenterLine, Projected) to focus the learning
task on the core geometric relationship types which form the
backbone of sketch geometry. These filtered types represent
higher-level constructs that can be equivalently modeled
using more fundamental constraints and dimensions. For
example, Symmetric constraints can be composed using
a combination of Midpoint, Equal, and Collinear
constraints. Similarly, Pattern constraints typically ex-
press repeated geometry with equal spacing, which can be
reconstructed through a combination of Equal dimensions
and manually replicated constraints. By removing these
non-core constraints, we simplify the constraint vocabulary
the model must learn while still covering the vast majority
of design intent in sketches.

Table A.1. Supported Constraints and Dimensions

Constraints Dimensions

Coincident Diameter
Horizontal Radius
Vertical Distance
Parallel Angle
Perpendicular Length
Tangent
Midpoint
Equal
Offset
Concentric

We next eliminate redundant constraints by deduplicat-
ing overlapping coincident points. We identify groups of
points that all coincide and merge or remove duplicate co-
incident constraints among them. This deduplication of co-
incident points removes unnecessary edges in the constraint
graph, reducing its complexity without altering the sketch’s
geometry. This focuses the model on the unique geomet-
ric relationships and avoids penalizing it for not outputting
repetitive constraints that do not add new information. To
avoid bias from repeated structures, we also deduplicate
very similar or identical sketches in the dataset. We detect
and remove duplicate sketches so that each unique sketch
structure is represented more evenly.

After applying the above filters, we verify each sketch’s
constraints for solver solvability. Any sketch that the solver
identifies as unsolvable is removed from the training set for
the SFT model training. This step guarantees that the model
trains only on valid, feasible sketches that correspond to
a realizable geometry. We also exclude sketches that are
grossly under-constrained, where the solver indicates many
degrees of freedom remain, since they may not demonstrate
clear constraint interactions for the model to learn. How-
ever, we add these sketches back for model fine-tuning.

Finally, we fix at least one point in each sketch to lock its
position. Because the SketchGraphs data often provides no



Table A.2. Statistics of the SketchGraphs dataset after preprocess-
ing.

Dataset-Level Statistics

Sketch Count 2,784,964
% FC 8.27 % Not Solvable 1.62
% OC 16.11 % Stable (bins=4) 93.70

Sketch-Level Statistics

Mean ±Std Min Median Max

Entity Count 14.68 ±7.27 1 13 64
Constraint Count 6.53 ±5.48 0 5 52
Dimension Count 1.08 ±1.67 0 0 42
% Point FC 27.13 ±22.72 0.00 20.00 100.00
% Curve FC 33.48 ±29.49 0.00 28.57 100.00

Constraint- and Dimension-Level Statistics

Type Frequency (%) Sketch Frequency (%)

Coincident 16.39% 31.13%
Horizontal 19.18% 64.20%
Vertical 11.16% 36.01%
Parallel 19.70% 42.26%
Perpendicular 13.56% 47.98%
Tangent 7.62% 13.47%
MidPoint 7.49% 20.79%
Equal 4.79% 13.20%
Concentric 0.11% 0.48%

Offset 43.15% 21.84%
Diameter 48.21% 25.37%
Radius 5.98% 4.57%
Linear 2.66% 1.93%
Angle 0.01% 0.01%

absolute anchor in the plane, many sketches exhibit degrees
of freedom that allow global translation or rotation without
altering constraints internally. In a typical design environ-
ment, at least one point or an entire component is fixed to
serve as a reference. Fixing a point eliminates global trans-
lational and rotational degrees of freedom, effectively lock-
ing the sketch in a consistent pose.

A.6.2. Processed Data Statistics
Table A.2 provides detailed statistics of the SketchGraphs
dataset after preprocessing. At the dataset level, the re-
sulting set contains approximately 2.8 million sketches.
Among these, only 8.27% of sketches are fully-constrained
(FC), highlighting the rarity of sketches that require no ad-
ditional constraints. Around 16.11% are over-constrained
(OC), while 1.62% are unsolvable. A majority (93.70%) of
sketches are stable when stability is evaluated using a 4-bin
discretization of geometry positions.

At the sketch level, the average sketch consists of about

15 geometric entities and contains roughly 7 constraints and
1 dimension, although there is considerable variation (stan-
dard deviation 7.27, 5.48, and 1.67, respectively). Addition-
ally, point-level and curve-level fully-constrained percent-
ages per sketch average at approximately 27% and 33%,
respectively, indicating that most sketches are significantly
under-constrained at the primitive level.

Table A.2 also summarizes the distribution of geometric
constraints and dimensions in the dataset. The Type Fre-
quency column reports the percentage of each constraint or
dimension type relative to the total number of constraints
or dimensions. The Sketch Frequency column shows the
percentage of sketches in which at least one instance of the
constraint or dimension appears.

We observe that commonly used geometric constraints
such as Horizontal, Vertical, Parallel, and
Coincident dominate the dataset, consistent with stan-
dard sketching practices in parametric CAD model-
ing. More specialized constraints like Concentric or
Tangent appear less frequently, which aligns with their
more limited use in practice.

For dimensions, Diameter and Offset are most fre-
quent, as circular and offset features are prevalent in me-
chanical design. Radius, Linear, and especially Angle
dimensions appear less often, consistent with their rela-
tively specialized applications. These trends support the
realism and representativeness of the dataset, suggesting it
captures authentic usage patterns by human experts in pro-
fessional CAD environments.

B. Architecture and Experiment Details
We discuss additional details regarding the model architec-
ture, training, and experiments.

B.1. Experimental Setup
All experiments are conducted on an AWS P5.48xlarge in-
stance. The instance is equipped with eight NVIDIA H100
GPUs (80 GB HBM3 memory per GPU), 192 vCPUs, and
2 TB of system memory.

A single epoch of RL training with the SketchGraphs
dataset takes ∼3 days to train. This is primarily due to the
frequent interactions with the CPU-based constraint solver
and the fact that solve times can be highly varied. Roughly
half of the training time is spent on GPU computation and
half on detokenization and solver interaction. We expect
custom optimizations could significantly reduce training
time.

B.2. Constraint-Level Accuracy Evaluation
Evaluating constraint generation by direct constraint-level
accuracy (i.e., exact matches between predicted and
ground-truth constraints) is not meaningful for the con-
straint generation task. First, most sketches in the Sketch-



Graphs dataset contain only a partial set of constraints de-
fined by the original designer. Consequently, the ground-
truth data does not necessarily represent the only valid or
complete solution for fully constraining the sketch. Sec-
ond, for a given geometric configuration, there often ex-
ist multiple valid constraint sets that can yield an equiva-
lent, fully-constrained and stable sketch. For instance, the
same geometry can be constrained either by a combination
of horizontal and vertical constraints or by applying equiv-
alent dimensional constraints, both of which are acceptable
in practice. This makes exact constraint matching an unre-
liable indicator of functional correctness.

Instead, we evaluate generated constraint sets using
functional metrics that better reflect real-world utility, as de-
scribed in ??. These include whether the generated sketch
is fully-constrained, stable, and solvable—metrics directly
tied to the practical usability of the generated constraints in
CAD workflows.

B.3. Vitruvion
We use Vitruvion as the core constraint generation model
for all post-training algorithms. Our implementation is
adapted to work with the Fusion sketch representation,
which treats all points as distinct geometric primitives. This
differs from Onshape, which introduces the concept of sub-
primitives – geometric entities can own points (e.g., a line
owns its start and end points). In the tokenized geome-
try sequence, each geometric entity is represented by its
top-level primitive along with a nested list of its associ-
ated sub-primitives. The pointer network can then refer-
ence both sub-primitives and standard primitives within the
index space of the tokenized geometry sequence. By con-
trast, in Fusion there is no concept of “sub-primitives” –
all indices in the tokenized geometry sequence are associ-
ated with independent primitives. When pre-processing the
data, we combine duplicate points in the SketchGraphs data
and initialize these as separate points (i.e. not owned by a
curve).

We additionally include a learned embedding for each
entity indicating whether or not the entity is fixed or not.
As mentioned in Appendix A.6, at least one fixed entity is
necessary to act as an anchor to the rest of the sketch. In or-
der for an entity to be fully constrained, the constraint graph
must connect to a fixed entity. We posit that this information
is valuable for the task of fully constraining sketches.

Our implementation represents curves, circles, and arcs
using 5 points extracted along the path of the shape. This
differs from Vitruvion which uses the parameters of the
shape such as start/end points, center, radius, and arc mid-
point. Lastly, we model constraints using the given (user)
order rather than ordering based on the referenced primi-
tives.

Our model generates constraints and dimensions as a

structured token sequence, where each token represents a
geometric primitive, constraint type, or dimensional rela-
tionship. This sequence-based representation allows the
model to flexibly express a wide variety of parametric re-
lationships. With a proper detokenization step, these se-
quences can be converted into standard constraint and di-
mension definitions supported by commercial CAD tools.
As a result, the generated outputs are not limited to a spe-
cific platform and can be directly imported into widely used
software such as Fusion, AutoCAD, Onshape, and Solid-
Works, enabling seamless integration with existing design
workflows.

B.4. Preference-based Optimization Algorithms
The hyperparameters for our preference-based optimization
algorithms are presented in Table B.1. Both DPO and Ex-
pert Iteration (ExIt) methods are initialized from the SFT
model and undergo 2 full rounds of data generation us-
ing a temperature of 1.0 followed by policy improvement.
The DPO implementation has additional hyper-parameters:
a β parameter controls preference strength, a small SFT
loss weight combines the DPO loss with a standard cross-
entropy loss on the positive sample τw, and a label smooth-
ing weight reduces model overconfidence. These settings
were determined through preliminary experiments to opti-
mize model performance.

Table B.1. Training hyperparameters for preference-based opti-
mization algorithms.

Hyperparameters ExIt DPO

Batch size 64 64
Rounds (N) 2 2
Learning rate 1e-6 1e-5
Sampling temperature (data) 1.0 1.0
β (DPO) - 0.1
SFT weight - 0.05
Label smoothing weight - 0.3

In the data generation phase, ExIt uses rejection sam-
pling to filter out any under-constrained, over-constrained,
or unsolvable model outputs. For DPO, we find all
pairs (τw, τl) of model outputs for the same sketch where
τw is fully-constrained and τl is under-constrained, over-
constrained, or unsolvable. In order to help DPO better
distinguish between the positive and negative examples, we
limit τl to have less than 90% fully constrained curves.

B.5. RL algorithms
For the rewards, we used runstable = −0.25 as a penalty for
unstable sketches, rNS = −1.0 as a penalty for not solv-
able sketches, rOC = −1.0 as a penalty for over-constrained
sketches, and rF = −0.5 as a penalty for sketches resulting



in other failures. Other training hyperparameter choices are
shown in Table B.2.

Table B.2. Training hyperparameters for RL algorithms.

Hyperparameters ReMax RLOO GRPO

Batch size 32 32 32
Group sample size - 8 8
Learning rate 1e-5 1e-5 1e-5
Sampling temperature 1.0 1.0 1.0
Reference update timesteps 100 100 100
KL penalty added to rewards 0.01 0.01 0.0
KL regularization β - - 0.01
Policy clipping threshold ϵ - - 0.2

C. Additional results
C.1. Diversity
Table C.1 presents the diversity metrics for constraint gen-
eration across different models. The Vitruvion base model
demonstrates the highest diversity with 65.23% unique
generations and a relatively low Mean Intersection over
Union (MIoU) of 0.623, indicating substantial variation be-
tween generated constraints. In contrast, RLOO and GRPO
show the least diversity, with 32.11% and 33.95% unique
sketches respectively, and high MIoU values exceeding
0.88, suggesting considerable overlap in their generations.
Expert Iteration achieves a better balance, maintaining rel-
atively high diversity (62.80% unique) while improving on
the base model’s performance. Standard SFT and Iterative
DPO fall between these extremes, with the latter showing
moderately improved diversity metrics over SFT.

Table C.1. Diversity results computed across 8 generations per
sketch. Unique@8 is the percentage of the time that the model
generates a unique set of constraints for each sketch, compared to
the other generations for the same sketch. We measure uniqueness
with the Weisfeiler Lehman (WL) graph hash with 4 quantization
bins. MIoU is the average intersection over union of the generated
constraints between the other generations for each sketch.

Model % Unique@8 ↑ MIoU@8 ↓

Vitruvion (base) 65.23 0.623
SFT 46.71 0.782
Iterative DPO 52.79 0.775
Expert Iteration 62.80 0.720
ReMax 35.80 0.877
RLOO 32.11 0.892
GRPO 33.95 0.881

C.2. Number of DPO/ExIt Iterations
Figure C.1 shows the performance of the preference-based
optimization algorithms across training rounds. Expert

iteration shows better performance at generating fully-
constrained and not over-constraining sketches compared
to DPO. One possible reason for this is that the process
of selecting positive/negative example pairs for DPO is
more restrictive since each positive (fully-constrained) ex-
ample must be matched with an under-constrained or over-
constrained example for the same sketch.

0 1 2
Iterations

0%

20%

40%

60%

80%

Pe
rc

en
ta

ge
 (%

)

Number of DPO/ExIt Iterations

ExIt FC %
ExIt UC %
ExIt OC %
ExIt NS %
ExIt Stability (bins=4)
DPO FC %
DPO UC %
DPO OC %
DPO NS %
DPO Stability (bins=4)

Figure C.1. Performance across rounds for Iterative DPO and Ex-
pert Iteration. Results are the mean of K = 8 samples. The initial
model at t = 0 is the SFT model

C.3. RL Training curves
Figure C.2 shows training performance over time for the
online reinforcement learning algorithms.

C.4. Impact of Sampling Parameters
To assess the robustness of our approach with respect to
sampling strategies, we conducted additional experiments
varying the temperature T and applying nucleus sampling
with different top-p values. Results are reported in Ta-
ble C.2. We observe that increasing T generally leads to
more diverse constraint sequences, occasionally improving
fully-constrained (FC) rates when combined with alignment
methods such as RLOO and GRPO. Similarly, moderate nu-
cleus sampling (p = 1.0) provides a favorable balance be-
tween exploration and reliability, whereas more aggressive
truncation (p = 0.5) reduces diversity and causes the model
to overfit to frequent constraint patterns, lowering FC per-
formance. These findings indicate that alignment gains are
robust within a reasonable range of sampling parameters,
but extreme sampling settings can bias the generation to-
ward either conservative or overly exploratory behaviors.

While all alignment methods benefit modestly from
higher T or larger p, the relative ranking of methods re-
mains consistent. RLOO and GRPO show the least sensitiv-
ity, maintaining stable performance across all sampling set-



0 2 k 4 k 6 k 8 k 10 k 12 k 14 k 16 k 18 k
Training steps

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

po
rti

on

ReMax
RLOO
GRPO

(a) Proportion of successfully constrained sketches

0 2 k 4 k 6 k 8 k 10 k 12 k 14 k 16 k 18 k
Training steps

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

po
rti

on

ReMax (Bad)
ReMax (Fail)
RLOO (Bad)
RLOO (Fail)
GRPO (Bad)
GRPO (Fail)

(b) Proportion of unsuccessfully constrained sketches

Figure C.2. Proportion of (a) successful sketches — de-
fined as fully constrained but not over-constrained — and (b)
badly constrained sketches which include under-constrained, over-
constrained, or constraint solver errors, over the course of training
for the RL methods ReMax, RLOO, and GRPO. Note that stability
is not considered when determining whether a sketch is success-
ful.

Table C.2. Pass@4 results: T refers to temperature and p refers to
the cumulative probability threshold in top-p sampling.

Model
T = 1.0 T = 1.5

p = 0.5 p = 1.0 p = 0.5 p = 1.0

Vitruvion (base) 13.69 15.94 12.96 14.31
SFT 35.13 40.04 35.92 40.78
Iterative DPO 61.64 67.03 62.72 67.77
Expert Iteration 67.54 70.01 68.01 71.28
ReMax 63.40 66.35 63.70 67.09
RLOO 83.50 84.48 83.75 84.89
GRPO 82.21 84.01 83.49 84.17

tings, which suggests that their learned policies generalize
better to variations in generation stochasticity. In contrast,
SFT and other preference-based methods exhibit larger vari-
ance, indicating higher dependence on sampling choices.

C.5. Impact of Reward Function Components
Our original reward function was designed to encourage
fully-constrained and stable sketches by maximizing the
FC ratio and minimizing geometric movement during con-
straint solving. While effective at guiding the model to-
ward functionally valid outputs, this setup inadvertently in-
troduced a loophole. The model learned to maximize re-
ward by adding excessive dimensions to overconstrain the
sketch geometry, thereby reducing movement and achiev-
ing a high FC ratio. However, this behavior undermines
the principles of parametric design, where the goal is for
dynamic modifications and efficient exploration of design
variations.

To address this issue, we extend the reward function with
two additional penalty terms. The first term penalizes the
total number of constraints and dimensions added, normal-
ized by the number of geometric entities in the sketch. This
discourages overly complex constraint sets. The second
term penalizes over-reliance on dimensions by minimizing
the ratio of dimensions to the total number of generated con-
straints and dimensions, promoting behavior more aligned
with human experts who prefer geometric constraints over
dimensional locking.

We denote this modified model as RLOO with re-
ward penalty. When trained using the same hyperparame-
ters as described in Table 1, the model achieves a slightly
higher FC ratio of 72.79% compared to Expert Iteration
(ExIt), though it exhibits slightly lower geometric stabil-
ity at 82.83%. On average, it generates 3.7 dimensions and
11.54 constraints per sketch. In contrast, the original RLOO
model without the new reward penalties produced an aver-
age of 19.5 dimensions and only 6.7 constraints, highlight-
ing the effectiveness of the reward components in guiding
the model away from degenerate solutions and toward more
semantically meaningful constraint configurations.

C.6. Human Evaluation Study
To validate that our alignment methods produce constraint
sequences that better align with human design intent, we
conducted a human evaluation study with professional CAD
designers. We designed a forced-choice perceptual study
to compare constraint generation quality across five model
variants: SFT (supervised fine-tuning), DPO (Direct Prefer-
ence Optimization), ExIt (Expert Iteration), RLOO (REIN-
FORCE Leave-One-Out), and RLOO with reward penalty.
For each pairwise comparison, participants were presented
with two images containing the same sketch but with con-
straints generated by different model variants.

The study included 30 representative sketches spanning
different complexity levels, from simple rectangular pro-
files to more complex geometries involving arcs and tan-
gent relationships, with each participant completing all pos-
sible pairwise comparisons between the five model vari-



SFT DPO ExIt RLOO RLOO (reward penalty)

SFT – 24.67% 16.67% 82.67% 36.00%
DPO 75.33% – 36.67% 90.67% 48.67%
ExIt 83.33% 63.33% – 94.00% 53.33%
RLOO 17.33% 9.33% 6.00% – 8.00%
RLOO (reward penalty) 64.00% 51.33% 46.67% 92.00% –

Table C.3. Pairwise preference study results between models. Each cell shows the percentage of times the row model was preferred over
the column model (out of 150 comparisons per pair). Higher values indicate stronger relative preference.

0 100 200 300 400
Times Preferred

RLOO

SFT

DPO

RLOO (+rp)

ExIt

Figure C.3. Number of times each model was preferred across
1500 pairwise comparisons by five expert designers. Each model
appears 600 times as one of the two options to select.

ants, resulting in
(
5
2

)
= 10 comparison pairs per sketch.

With 5 participants and 30 sketches, we collected 150 judg-
ments per model pair, totaling 1500 pairwise comparisons.
The sketches were visualized with fully-constrained curves
colored black and all other curves colored blue. Unstable
sketches were purposefully removed in order to focus the
participants on the quality of the generated constraints with
respect to design intent.

A sample screenshot of what participants see while com-
paring sketches is shown in Figure C.4. Participants were
asked to choose the set of constraints that they would use
if tasked with constraining the sketch themselves and could
make modifications on top of the generated constraints.

Table C.3 presents the pairwise preference results, re-
vealing a clear hierarchy: ExIt achieved strong perfor-
mance, being preferred over SFT (83.33%), DPO (63.33%),
and RLOO (94.00%), while DPO outperformed SFT
(75.33%) and RLOO (90.67%). Standard RLOO performed
worst across all comparisons, with preference rates below
18%. However, RLOO with reward penalty showed sub-
stantial improvement, being preferred over standard RLOO
(92.00% of the time) and achieving moderate performance
against other methods. Compared to ExIt, we find that
RLOO with reward penalty performs on par, with ExIt be-

ing preferred in 53% of sketches on average. However, indi-
vidual preferences vary: two participants preferred RLOO,
two preferred ExIt, and one rated them equally. A similar
trend is observed when comparing to DPO, where RLOO
is preferred slightly more often on a sketch-by-sketch ba-
sis (48.67% of the time), but a tie on individual preferences.
These results suggest that the models are closely matched in
overall performance, while reward design has a significant
impact on the behavior of the RL model.

Figure C.3 summarizes the total number of times each
model was preferred by human evaluators in 1500 pairwise
comparisons. Each model appears 600 times as a candidate
in the evaluation. ExIt is overall the most favored model, re-
flecting its strong alignment with design intent. The vanilla
RLOO model is least preferred due to its overuse of dimen-
sions, which often reduces parametric flexibility. When re-
ward penalties are added to RLOO to discourage unneces-
sary dimension use, its performance improves significantly,
making it more competitive across designers.

C.7. Failed Attempts

Despite our efforts to leverage reinforcement learning for
constraint generation, we encountered several dead ends.
Each failed attempt underlines a fundamental challenge in
aligning reward signals and exploration strategies with the
requirements of geometric constraint generation. Below, we
discuss three key failures, followed by brief summaries of
the lessons drawn from each.

C.7.1. PPO with a Learned Reward Model
We first attempted to train a policy using PPO, guided by
a learned reward model predicting how well the generated
constraints would align with desired outcomes. This reward
model serves as a surrogate model of the constraint solver,
estimating the curve and point fully-constrained percentage,
fully-constrained and under-constrained status, and stabil-
ity. Unfortunately, the agent over-fit the reward model’s
idiosyncrasies instead of genuinely improving constraint
quality. In our case, PPO steadily increased the reward
model’s score, but the rate of curve fully-constrained per-
centage actually dropped, which is evident that the policy
was “reward hacking” the learned metric.



Figure C.4. Screenshot of the user study. Participants were asked to follow the instructions in the left panel and choose the preferred sketch.

Several practical issues led to this failure. First, we lack
diverse training samples for the reward model, especially
for over-constrained or edge-case scenarios. The reward
model was trained on two different settings, either on sparse
per-sequence labels (only knowing the true evaluation met-
rics given an entire constraint set) or on per-constraint feed-
back. Both schemes suffered from limited coverage of fail-
ure modes. When PPO began producing novel constraint
combinations outside the training distribution, the reward
model was out of its depth. In our implementation, the
reward model remained fixed during PPO fine-tuning; as
the policy explored new regions of the constraint space, the
frozen reward model’s prediction errors grew unchecked.

C.7.2. PPO with Solver-based Rewards

Another approach replaced the learned reward model with
direct solver feedback, providing a reward only when the
entire constraint sequence is generated. Although this
feedback was unambiguously correct, it proved extremely
sparse, the distribution of rewards remained highly skewed,
with most episodes clustered near the lower or neutral end
and only infrequent high-reward successes, causing train-
ing to collapse. For the policy gradient approach, such spo-
radic positive returns can still nudge the policy upward in
proportion to the log probability of successful episodes. In
contrast, the PPO algorithm sees little incremental feedback

to guide learning, sudden high rewards are either clipped or
overshadowed by large variance in advantage estimates.

C.7.3. Logic-based Action Masking
Finally, we tested logit masking to disallow certain “in-
valid” actions. In principle, this was meant to help by pre-
venting the agent from exploring blatantly wrong moves.
Surprisingly, this logit masking made learning worse for all
our RL algorithms. One theoretical reason is that the mask,
while eliminating invalid actions, also over-constrained the
policy’s exploration. Contrary to expectations, blocking
these actions harmed training. By never letting the agent at-
tempt blatantly invalid moves, the model lost valuable neg-
ative feedback signals and drastically curtailed exploration.
Another theoretical concern is that dynamic action masking
can complicate the Markov Decision Process. So the issue
is likely not that the concept of masking is invalid, but rather
that it altered the learning dynamics in our specific setting.


	Parametric CAD Sketches
	Background
	Constraint State Definitions
	Unstable Sketch Definition
	Fusion Sketch Representation
	Sketch Tokenization
	SketchGraphs Dataset
	Data Preprocessing
	Processed Data Statistics


	Architecture and Experiment Details
	Experimental Setup
	Constraint-Level Accuracy Evaluation
	Vitruvion
	Preference-based Optimization Algorithms
	RL algorithms

	Additional results
	Diversity
	Number of DPO/ExIt Iterations
	RL Training curves
	Impact of Sampling Parameters
	Impact of Reward Function Components
	Human Evaluation Study
	Failed Attempts
	PPO with a Learned Reward Model
	PPO with Solver-based Rewards
	Logic-based Action Masking



