C2MIL: Synchronizing Semantic and Topological Causalities in Multiple
Instance Learning for Robust and Interpretable Survival Analysis

Supplementary Material

6. Method Supplementary

6.1. Graph Transformer Architecture Description

Graph Transformer [41] consists of L stacked identical
layers, each containing multi-head graph attention mech-
anisms, positional encoding fusion, and position-enhanced
feed-forward networks. The architecture is formally defined
as follows:

Input Representation. Let graph G = (V, E) contain n
nodes, where each node i has feature vector h; € R%, with
adjacency matrix A € {0,1}"*™. The input feature matrix
is HO = [hy, -, hy,|T € R?*4,

Relative Posit Encoding. The encoder structural relation-
ship uses random walk probabilities:

R,; = Softmax <1°g\(/§”)) : (18)

where P € R™*"™ is the random walk transition probability
matrix computed using k-step truncated values.
Multi-head Graph Attention Mechanism. For the h-th
attention head in layer [:

Q(h) - H(l)Wg), KM — H(l)W%),V(h) - H(l)ng)’

o ac)”))
exp | o : J + Ay
ol _ p((yam_ o)

iy (h) g (BN T ’
Q! (k!
e)
(19)

where ¢ : R — R is an edge information mapping function,
o denotes LeakyReLU activation, and H is the number of
attention heads.

Structure-Aware Attention Aggrgation.

7" = Softmax(a™)VM + Ro (a®VM) (20

where o denotes the Hadmard product. The multi-head out-
put is concatenated:

HY = Lz W, @1
Residual Connection & Layer Normalization.
H® = LayerNorm (H(l) + fI(l)) . (22)

Postition-Enhanced Feed-Forward Network.

H" = LayerNorm (I:I“) + W, - GELUW,HY + by) + bz) .

(23)

where W € R*¥*4 and W, € R?*49 are learnable param-
eters.

Output Layer Final node representations are obtained via
K-hop neighborhood pooling:

K
yi= Y w-MEAN ({H{"|j e Ni()}), @4)
k=0
where 7, are learnable decay coefficients.

6.2. Subgraph Sampling Pseudocodes

Algorithm 1 Subgraph Sampling

Input: Adjusted graph G (\7, E, A); Linear MLP(-);
Graph Transformer Model GT'(+); subgraph(-, -) func-
tion of graph containing the mask nodes; Activation
function sigmoid o (+).
Output: Causal graph C and non-causal graph S.
G'.V = MLP(G.V)
G'.EFE=G.E
G A=[GV;;G.Vj(i,5) € GE
P =0o(GT(G")
if training stage then

sample = Bernoulli(P)

mask = sample.detach() + P — P.detach()

C' = subgraph(G’, mask)

S = subgraph(G’, 1 — mask)
else

C' = subgraph(G’, P)

S = subgraph(G’,1 — P)

R A A S ol S

_ = =
M 22

7. Experiments Supplementary

7.1. Implement Details

A pretrained UNI is used to extract features from both
thumbnails and patches. The thumbnails are derived from
WSIs at 40 x magnification with a 30x downsampling. The
patches are obtained by segmenting WSIs at 40x magni-
fication into images of size 1024 x 1024 pixels. Before
being fed into the feature extractor, both thumbnails and
patches are resized to 224 x 224. Patches in a WSI is
constructed as a graph by K nearest neighborhood (KNN)
through the coordinates of patches. The proposed frame-
work is implemented with PyTorch [29] and PyTorch Ge-
ometric [10] and all the experiments are conducted on one

NVIDIA A100 GPU with 40GB memory with batch size
16 and 100 epochs. The warm-up epoch is 2 on internal
experiments and 10 on external experiments.

7.2. Results of Adaptive Cluster Number (K) Anal-
ysis

Specific value in Section 4.3

TCGA-KIRC TCGA-ESCA TCGA-BLCA
K=2 0.6775 0.6591 0.5905
K=3 0.6920 0.6684 0.5775
K=4 0.6844 0.6418 0.5762
K=5 0.6795 0.6557 0.5934
K=6 0.6893 0.6445 0.5812
Adaptive clusters (Ours) 0.7078 0.6904 0.6081
Oracle clusters 0.7131 0.6949 0.6098

Table 4. Predictive performance analysis of the adaptive optimal
clustering number method compared with fixed number K of clus-
ters.

