
C2MIL: Synchronizing Semantic and Topological Causalities in Multiple
Instance Learning for Robust and Interpretable Survival Analysis

Supplementary Material

6. Method Supplementary
6.1. Graph Transformer Architecture Description
Graph Transformer [41] consists of L stacked identical
layers, each containing multi-head graph attention mech-
anisms, positional encoding fusion, and position-enhanced
feed-forward networks. The architecture is formally defined
as follows:
Input Representation. Let graph G = (V,E) contain n
nodes, where each node i has feature vector hi ∈ Rd, with
adjacency matrix A ∈ {0, 1}n×n. The input feature matrix
is H(0) = [h1, · · · , hn]

T ∈ Rn×d.
Relative Posit Encoding. The encoder structural relation-
ship uses random walk probabilities:

Rij = Softmax
(
log(Pij)√

d

)
, (18)

where P ∈ Rn×n is the random walk transition probability
matrix computed using k-step truncated values.
Multi-head Graph Attention Mechanism. For the h-th
attention head in layer l:

Q(h) = H(l)W
(h)
Q ,K(h) = H(l)W

(h)
K ,V(h) = H(l)W

(h)
V ,

α
(h)
ij =

exp

(
σ

(
Q

(h)
i (K

(h)
j )⊤√

d/H
+ ϕ(Aij)

))
∑

k∈Ni
exp

(
σ

(
Q

(h)
i (K

(h)
k )⊤√

d/H
+ ϕ(Aik)

)) ,

(19)
where ϕ : R→ R is an edge information mapping function,
σ denotes LeakyReLU activation, and H is the number of
attention heads.
Structure-Aware Attention Aggrgation.

Z(h) = Softmax(α(h))V(h) +R ◦ (α(h)V(h)), (20)

where o denotes the Hadmard product. The multi-head out-
put is concatenated:

Ĥ(l) = ∥Hh=1Z
(h)W

(h)
O . (21)

Residual Connection & Layer Normalization.

H̄(l) = LayerNorm
(
H(l) + Ĥ(l)

)
. (22)

Postition-Enhanced Feed-Forward Network.

H(l+1) = LayerNorm
(
H̄(l) +W2 · GELU(W1H̄

(l) + b1) + b2

)
.

(23)

where W1 ∈ R4d×d and W2 ∈ Rd×4d are learnable param-
eters.
Output Layer Final node representations are obtained via
K-hop neighborhood pooling:

yi =

K∑
k=0

γk ·MEAN
(
{H(L)

j |j ∈ Nk(i)}
)
, (24)

where ηk are learnable decay coefficients.

6.2. Subgraph Sampling Pseudocodes

Algorithm 1 Subgraph Sampling

Input: Adjusted graph G(Ṽ , E,A); Linear MLP(·);
Graph Transformer Model GT (·); subgraph(·, ·) func-
tion of graph containing the mask nodes; Activation
function sigmoid σ(·).
Output: Causal graph C and non-causal graph S.

1: G′.V = MLP(G.V )
2: G′.E = G.E
3: G′.A = [G′.Vi;G

′.Vj ]⟨i, j⟩ ∈ G.E
4: P = σ(GT (G′))
5: if training stage then
6: sample = Bernoulli(P )
7: mask = sample.detach() + P − P .detach()
8: C = subgraph(G′,mask)
9: S = subgraph(G′, 1−mask)

10: else
11: C = subgraph(G′, P )
12: S = subgraph(G′, 1− P )

7. Experiments Supplementary
7.1. Implement Details
A pretrained UNI is used to extract features from both
thumbnails and patches. The thumbnails are derived from
WSIs at 40×magnification with a 30× downsampling. The
patches are obtained by segmenting WSIs at 40× magni-
fication into images of size 1024 × 1024 pixels. Before
being fed into the feature extractor, both thumbnails and
patches are resized to 224 × 224. Patches in a WSI is
constructed as a graph by K nearest neighborhood (KNN)
through the coordinates of patches. The proposed frame-
work is implemented with PyTorch [29] and PyTorch Ge-
ometric [10] and all the experiments are conducted on one



NVIDIA A100 GPU with 40GB memory with batch size
16 and 100 epochs. The warm-up epoch is 2 on internal
experiments and 10 on external experiments.

7.2. Results of Adaptive Cluster Number (K) Anal-
ysis

Specific value in Section 4.3

TCGA-KIRC TCGA-ESCA TCGA-BLCA

K = 2 0.6775 0.6591 0.5905
K = 3 0.6920 0.6684 0.5775
K = 4 0.6844 0.6418 0.5762
K = 5 0.6795 0.6557 0.5934
K = 6 0.6893 0.6445 0.5812

Adaptive clusters (Ours) 0.7078 0.6904 0.6081
Oracle clusters 0.7131 0.6949 0.6098

Table 4. Predictive performance analysis of the adaptive optimal
clustering number method compared with fixed number K of clus-
ters.


