C²MIL: Synchronizing Semantic and Topological Causalities in Multiple Instance Learning for Robust and Interpretable Survival Analysis

Supplementary Material

6. Method Supplementary

6.1. Graph Transformer Architecture Description

Graph Transformer [41] consists of L stacked identical layers, each containing multi-head graph attention mechanisms, positional encoding fusion, and position-enhanced feed-forward networks. The architecture is formally defined as follows:

Input Representation. Let graph G=(V,E) contain n nodes, where each node i has feature vector $h_i \in \mathbb{R}^d$, with adjacency matrix $A \in \{0,1\}^{n \times n}$. The input feature matrix is $H^{(0)} = [h_1, \cdots, h_n]^T \in \mathbb{R}^{n \times d}$.

Relative Posit Encoding. The encoder structural relationship uses random walk probabilities:

$$\mathbf{R}_{ij} = \text{Softmax}\left(\frac{\log(P_{ij})}{\sqrt{d}}\right),\tag{18}$$

where $P \in \mathbb{R}^{n \times n}$ is the random walk transition probability matrix computed using k-step truncated values.

Multi-head Graph Attention Mechanism. For the h-th attention head in layer *l*:

$$\mathbf{Q}^{(h)} = \mathbf{H}^{(l)} \mathbf{W}_{Q}^{(h)}, \mathbf{K}^{(h)} = \mathbf{H}^{(l)} \mathbf{W}_{K}^{(h)}, \mathbf{V}^{(h)} = \mathbf{H}^{(l)} \mathbf{W}_{V}^{(h)},$$

$$\alpha_{ij}^{(h)} = \frac{\exp\left(\sigma\left(\frac{\mathbf{Q}_{i}^{(h)} (\mathbf{K}_{j}^{(h)})^{\top}}{\sqrt{d/H}} + \phi(A_{ij})\right)\right)}{\sum_{k \in \mathcal{N}_{i}} \exp\left(\sigma\left(\frac{\mathbf{Q}_{i}^{(h)} (\mathbf{K}_{k}^{(h)})^{\top}}{\sqrt{d/H}} + \phi(A_{ik})\right)\right)},$$
(19)

where $\phi: \mathbb{R} \to \mathbb{R}$ is an edge information mapping function, σ denotes LeakyReLU activation, and H is the number of attention heads.

Structure-Aware Attention Aggrgation.

$$\mathbf{Z}^{(h)} = \operatorname{Softmax}(\boldsymbol{\alpha}^{(h)})\mathbf{V}^{(h)} + \mathbf{R} \circ (\boldsymbol{\alpha}^{(h)}\mathbf{V}^{(h)}), \quad (20)$$

where o denotes the Hadmard product. The multi-head output is concatenated:

$$\hat{\mathbf{H}}^{(l)} = \|_{h=1}^{H} \mathbf{Z}^{(h)} \mathbf{W}_{O}^{(h)}. \tag{21}$$

Residual Connection & Layer Normalization.

$$\bar{\mathbf{H}}^{(l)} = \text{LayerNorm}\left(\mathbf{H}^{(l)} + \hat{\mathbf{H}}^{(l)}\right).$$
 (22)

Postition-Enhanced Feed-Forward Network.

$$\mathbf{H}^{(l+1)} = \text{LayerNorm} \left(\mathbf{\bar{H}}^{(l)} + \mathbf{W}_2 \cdot \text{GELU}(\mathbf{W}_1 \mathbf{\bar{H}}^{(l)} + \mathbf{b}_1) + \mathbf{b}_2 \right). \tag{23}$$

where $W_1 \in \mathbb{R}^{4d \times d}$ and $W_2 \in \mathbb{R}^{d \times 4d}$ are learnable parameters.

Output Layer Final node representations are obtained via K-hop neighborhood pooling:

$$\mathbf{y}_{i} = \sum_{k=0}^{K} \gamma_{k} \cdot \text{MEAN}\left(\left\{\mathbf{H}_{j}^{(L)} | j \in \mathcal{N}_{k}(i)\right\}\right), \quad (24)$$

where η_k are learnable decay coefficients.

6.2. Subgraph Sampling Pseudocodes

Algorithm 1 Subgraph Sampling

Input: Adjusted graph $G(\tilde{V}, E, A)$; Linear $MLP(\cdot)$; Graph Transformer Model $GT(\cdot)$; subgraph (\cdot, \cdot) function of graph containing the mask nodes; Activation function sigmoid $\sigma(\cdot)$.

Output: Causal graph C and non-causal graph S.

```
1: G'.V = MLP(G.V)
```

2:
$$G'.E = G.E$$

3:
$$G'.A = [G'.V_i; G'.V_j]\langle i,j \rangle \in G.E$$

4:
$$P = \sigma(GT(G'))$$

5: if training stage then

6:
$$sample = Bernoulli(P)$$

7:
$$mask = sample.detach() + P - P.detach()$$

8:
$$C = \text{subgraph}(G', \text{mask})$$

9:
$$S = \text{subgraph}(G', 1 - \text{mask})$$

10: **else**

11: $C = \operatorname{subgraph}(G', P)$

12: $S = \operatorname{subgraph}(G', 1 - P)$

7. Experiments Supplementary

7.1. Implement Details

A pretrained UNI is used to extract features from both thumbnails and patches. The thumbnails are derived from WSIs at $40\times$ magnification with a $30\times$ downsampling. The patches are obtained by segmenting WSIs at $40\times$ magnification into images of size 1024×1024 pixels. Before being fed into the feature extractor, both thumbnails and patches are resized to 224×224 . Patches in a WSI is constructed as a graph by K nearest neighborhood (KNN) through the coordinates of patches. The proposed framework is implemented with PyTorch [29] and PyTorch Geometric [10] and all the experiments are conducted on one

NVIDIA A100 GPU with 40GB memory with batch size 16 and 100 epochs. The warm-up epoch is 2 on internal experiments and 10 on external experiments.

7.2. Results of Adaptive Cluster Number (K) Analysis

Specific value in Section 4.3

	TCGA-KIRC	TCGA-ESCA	TCGA-BLCA
K=2	0.6775	0.6591	0.5905
K = 3	0.6920	0.6684	0.5775
K = 4	0.6844	0.6418	0.5762
K = 5	0.6795	0.6557	0.5934
K = 6	0.6893	0.6445	0.5812
Adaptive clusters (Ours)	0.7078	0.6904	0.6081
Oracle clusters	0.7131	0.6949	0.6098

Table 4. Predictive performance analysis of the adaptive optimal clustering number method compared with fixed number K of clusters.