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A. Training details

In this section, we provide any relevant parameters used to
train our models.

A.1. Object-removal task
For the object-removal task, we trained our model for 20k
iterations on 2 H100 GPUs. We set σ = 0.05 and used
the timestep distribution we propose in the main paper i.e.
π(t) = U(i/4)i∈{0,1,2,3}. We use a bucketing strategy as
proposed in [6] allowing us to handle multiple aspect ratios
and resolutions. This strategy consists of defining buckets
with pre-defined aspect ratios and pixel budgets and filling
them with the data flow. During each training iteration, a
target pixel budget is sampled and then the upcoming im-
ages are assigned to the bucket with the closest aspect ra-
tio and budget and are resized accordingly. We use the
following bucket pixel budgets: [2562, 5122, 7682, 10242]
sampled with probabilities [0.1, 0.2, 0.2, 0.5]. For each bud-
get we consider aspect ratios ranging from 0.25 to 4. The
batch sizes are respectively set to 32, 16, 8 and 4 for each
budget. We trained the model with LPIPS pixel loss with
weight λ = 10 and a learning rate of 3e−5 and we used the
AdamW optimizer [5]. For data sources, we randomly sam-
pled data from the RORD train set, our synthetic dataset or
our in-the-wild dataset with probabilities [0.3, 0.3, 0.4]. For
the latter, we used the random masking strategy proposed in
[13] while for RORD and our synthetic dataset we used the
provided semantic masks. The denoiser is initialized using
the weights of the pre-trained text-to-image model SDXL
[6].

A.2. Depth estimation
For depth estimation, we trained our model for 20k itera-
tions on 2 H100 GPUs. We set σ = 0.005 and set λ = 50
for the pixel loss (LPIPS) scale. We used the following
timestep distribution π(t) = 0.025 ·δt=0.75+0.05 ·δt=0.5+
0.025 · δt=0.25+0.9 · δt=0 to favor 1 step inference. We use
a batch size of 4 and trained the model with a combination
of hypersim [7] (40%), virtual KITTI [1] (10%) and replica

[12] (50%) datasets. For virtual KITTI, as is common, we
set the far plane to 80m. The learning rate is set to 4e−5 and
we used the AdamW optimizer during training.

A.2.1. Normal estimation
For surface normal estimation, we trained an LBM model
for 25k iterations on 2 H100 GPUs. We set σ = 0.1 and
λ = 50 and used a pixel loss chosen as L1. We used the
following timestep distribution π(t) = 0.05 · δt=0.75 +0.1 ·
δt=0.5+0.05 ·δt=0.25+0.8 ·δt=0 to favour 1 step inference.
We used a batch size of 4 and trained the model with a com-
bination of hypersim [7] (20%), virtual KITTI [1] (10%) and
replica [12] (70%) datasets. The learning rate is set to 4e−5

and we used the AdamW optimizer during training.

A.2.2. Image relighting
In the case of image relighting, we trained a LBM model
for 20k iterations on 2 H100 GPUs. We set σ = 0.01 and
λ = 10 and used a LPIPS pixel loss. We used the same
timestep distribution and the same data bucketing strategy
as for the object-removal task with the same bucket pixel
budgets and probabilities. The training data is composed
of synthetic data created using the rendering engine (90%)
and in-the-wild data (10%). We trained the model with a
learning rate of 3e−5 together with the AdamW optimizer.

A.2.3. Controllable shadow generation and controllable
image relighting

For these experiments, we trained a conditional LBM for
19k iterations using a pixel loss scale set to λ = 2.5 with
LPIPS loss. We used a timestep distribution π(t) similar to
the one used for the object-removal task. We used a batch
size of 4 and trained the model with a learning rate set to
5e−5 together with AdamW optimizer. The light map con-
ditioning is injected by concatenating it in the latent space
along the channels axis. In these cases, we only trained with
the synthetic data created using the rendering engine.

B. Additional object-removal results
In this appendix, we provide additional results for the ob-
ject removal task. In this case, instead of considering the
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coarse semantic masks from RORD validation set, we con-
sider the fine semantic masks precisely indicating the object
to remove from the source image. We provide in Tab. 1, the
same metrics as in the main paper. Similar to what was ob-
served in the previous experiment, the proposed model is
again able to reach the best results.

Method (NFE) FID ↓ Local FID ↓ fMSE ↓ PSNR ↑ SSIM ↑

LAMA (1) 30.43 36.69 2450.60 19.74 56.45
SDXL inp. (50) 42.55 45.35 3976.95 20.06 69.49
PowerPaint (50) 40.61 40.35 3673.91 20.71 66.85

AE (50) 18.43 22.24 1772.99 22.81 70.79

Ours (1) 15.50 15.62 1024.67 24.28 73.10

Table 1. Metrics for object-removal task with models fine-tuned
on RORD train set and evaluated on RORD validation set (52k
images) using the fine semantic masks. Our method uses a single
NFE. Best results are highlighted in bold, second best are under-
lined.

For the sake of completeness, we also fine-tune LAMA,
SDXL-inpaint., PowerPaint and our LBM checkpoint (At-
tentive Eraser is training-free) only on RORD train set such
that all the models see approx. 400k samples, which was
enough to reach convergence. For the sake of complete-
ness, we also train a LBM model from scratch only on the
RORD train set with the same number of iterations. We
share the results in Tab. 2. As shown in the table, while this
fine-tuning step improves competitors’ results, in particular
for fine masks, our method still outperforms competitors for
most metrics. Also note that our initial model is 047 trained
on 2 H100 for ≈18h vs. 240h on 8 V100 for LAMA.

Method FID↓ Local FID↓ fMSE↓ PSNR↑ SSIM↑ Inf.
Coa. Fin. Coa. Fin. Coa. Fin. Coa. Fin. Coa. Fin. time (s)

LAMA 30.3 21.4 38.0 28.2 1592.2 1350.3 19.7 20.6 55.9 57.1 0.1
SDXL-inp. 27.2 18.5 27.3 18.0 2297.3 2213.1 19.8 21.4 64.9 69.0 7.2
PowerPaint 29.9 27.0 30.0 23.7 2871.2 2679.7 18.5 19.9 58.3 63.4 4.2

AE 29.7 18.4 33.2 22.2 2029.0 1773.0 20.9 22.8 65.7 70.8 8.0

Ours 26.9 15.7 30.5 15.6 1306.6 997.4 22.5 24.5 69.2 73.2 0.3
Ours (scratch) 27.9 16.7 30.7 16.9 1329.5 1032.2 22.4 24.4 69.0 72.9 0.3

Table 2. Metrics for object-removal task computed on RORD val-
idation set using the coarse (Coa.) and fine (Fin.) masks. Our
method and LAMA use a single neural function evaluation (NFE),
others use 50 NFEs. Inference time is averaged over 50 images
and computed on a single H100 GPU.

C. Results for depth estimation
As mentioned in the main paper, we also consider the
monocular depth estimation task which consists of estimat-
ing a depth map from a two dimensional image. We pro-
vide in Tab. 3 the zero-shot results of our method compared
to the state-of-the-art methods on commonly used evalua-
tion datasets such as NYUv2 [11], KITTI [3], ETH3D [10],
Scannet [2] and DIODE [14]. As shown in the table , the
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Figure 1. Failure cases for object-removal. In the first row the
model is not able to remove completely the shadow underneath
the object. In the second row the model is not able to remove the
reflection on the glass.

proposed method is able to outperform or be competitive
with the state-of-the-art methods and achieves the best av-
erage ranking across all metrics and datasets.

D. Failure cases
In this section, we present some identified failure cases of
our model for the different tasks considered.

D.1. Object-removal
For object-removal, we noticed that our method can remove
shadows more efficiently than all the existing methods as
shown in the main paper, but there still exists some cases
where it is not able to remove the shadow perfectly. More-
over, sometimes the model is not able to remove complex
reflections of the object in the environment. These two
failure cases are illustrated in Fig. 1. On the top row, the
shadow underneath the object to remove is still visible in
the output image. On the bottom row, the model success-
fully removed the person and associated shadow but failed
to remove the reflection on the glass door.

D.2. Image relighting
While the proposed method is able to handle most cases, we
noticed that it can sometimes fail to remove existing reflec-
tions on the foreground image, induce a color shift or add a
plastic effect to the output image due to the use of synthetic
data for training. We believe that these three failure cases
can be addressed with a more careful training data curation
and through more realistic renderings of the synthetic data.

E. Memory footprint and inference time
Our intuition to use a latent model is motivated by the key
observations made in [8] where the authors scale image gen-
eration from diffusion models. Nevertheless, we quantita-
tively report in Tab. 4 the memory/latency comparison be-
tween a pixel model and a latent model both for training and
inference. Note that the VAE compresses the source image



Method NYUv2 KITTI ETH3D ScanNet DIODE Avg
AbsRel↓ δ1 ↑ δ2 ↑ AbsRel↓ δ1 ↑ δ2 ↑ AbsRel↓ δ1 ↑ δ2 ↑ AbsRel↓ δ1 ↑ δ2 ↑ AbsRel↓ δ1 ↑ δ2 ↑ Rank

DiverseDepth 11.7 87.5 - 19.0 70.4 - 22.8 69.4 - 10.9 88.2 - 37.6 63.1 - 16.6
MiDaS 11.1 88.5 - 23.6 63.0 - 18.4 75.2 - 12.1 84.6 - 33.2 71.5 - 16.1
LeRes 9.0 91.6 - 14.9 78.4 - 17.1 77.7 - 9.1 91.7 - 27.1 76.6 - 13.2

Omnidata 7.4 94.5 - 14.9 83.5 - 16.6 77.8 - 7.5 93.6 - 33.9 74.2 - 13.2
DPT 9.8 90.3 - 10.0 90.1 - 7.8 94.6 - 8.2 93.4 - 18.2 75.8 - 10.8
HDN 6.9 94.8 - 11.5 86.7 - 12.1 83.3 - 8.0 93.9 - 24.6 78.0 - 10.2

DepthFM 6.0 95.5 - 9.1 90.2 - 6.5 95.4 - 6.6 94.9 - 22.4 78.5 - 7.2
GenPercept 5.6 96.0 99.2 13.0 84.2 97.2 7.0 95.6 98.8 6.2 96.1 99.1 35.7 75.6 86.6 8.3

Diff.-E2E-FT 5.4 96.5 99.1 9.6 92.1 98.0 6.4 95.9 98.7 5.8 96.5 98.8 30.3 77.6 87.9 5.6
DepthAnything V2 4.5 97.9 99.3 7.4 94.6 98.6 13.1 86.5 97.5 4.2 97.8 99.3 26.5 73.4 87.1 5.4

DepthAnything 4.3 98.1 99.6 7.6 94.7 99.2 12.7 88.2 98.3 4.3 98.1 99.6 26.0 75.9 87.5 4.1
GeoWizard 5.6 96.3 99.1 14.4 82.0 96.6 6.6 95.8 98.4 6.4 95.0 98.4 33.5 72.3 86.5 9.6

Marigold (LCM) 6.1 95.8 99.0 9.8 91.8 98.7 6.8 95.6 99.0 6.9 94.6 98.6 30.7 77.5 89.3 7.7
Marigold 5.5 96.4 99.1 9.9 91.6 98.7 6.5 95.9 99.0 6.4 95.2 98.8 30.8 77.3 88.7 6.4
Lotus-D 5.1 97.2 99.2 8.1 93.1 98.7 6.1 97.0 99.1 5.5 96.5 99.0 22.8 73.8 86.2 4.0
Lotus-G 5.4 96.8 99.2 8.5 92.2 98.4 5.9 97.0 99.2 5.9 95.7 98.8 22.9 72.9 86.0 5.3

Ours 5.6 97.2 99.2 9.4 93.0 98.9 6.3 96.5 99.3 5.7 97.0 99.2 30.3 77.5 89.3 3.7

Table 3. Metrics for depth estimation task. Our method uses a single NFE. Competitors results are taken from [4]. Best results are
highlighted in bold, second best are underlined.
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Figure 2. Failure cases for image relighting. On the left, the model
is not able to remove the reflection in the subject glasses. On the
right, the model changes the color of the person’s jacket and create
a plastic effect on the face.

by a factor of 8 and is frozen during training drastically re-
ducing the memory footprint of the model as shown in the
table.

Mode (Resolution) Metric Pixel Model Latent Model Gain

Inference (256 / 1024) Latency (s) 0.19 / 20.11 0.14 / 0.27 26.3% / 98.7%
Peak Memory (Gb) 5.63 / 15.71 5.29 / 7.70 6.0% / 51.0%

Training (256 / 1024) Latency (s) 0.71 / - 0.43 / 0.58 39.4% / -
Peak Memory (Gb) 43.19 / OoM 24.85/ 25.35 41.3% / -

Table 4. Training and inference memory usage and per-iteration
latency for a pixel and a latent bridge model. The metrics are
averaged over 10 images using a batch size of 1 with AdamW for
training and 1 NFE for inference on a single H100 80Gb GPU.

F. Additional samples
Finally, we provide additional samples for object-removal
in Fig. 3 and for image relighting in Figs. 4 to 8. For object-
removal, our model remains the only one capable of remov-
ing the target object as well as the associated shadows. For
image relighting, the proposed approach can create strong
illumination effects on the foreground object and can handle
complex lighting conditions. To further stress the method’s
versatility, we also consider an image restoration task and
provide qualitative samples in Figs. 9 and 10. For this task,

π0 corresponds to the distribution of the latents of the de-
graded images while π1 is the distribution of the latents of
the clean images. We artificially create degraded images
using the method proposed in [15]. In line with the perfor-
mance observed for the tasks considered in the paper, the
proposed method is able to create realistic outputs from de-
graded images.



Figure 3. Qualitative results for object-removal on RORD validation dataset [9]. Best viewed zoomed in. Our model uses a single NFE
and is able to successfully remove not only the object but also its shadow.



Figure 4. Qualitative results for object relighting. The model is able to relight the object according to the provided background and also
remove existing shadows and reflections.
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Figure 5. Qualitative results for object relighting. The model is able to relight the object according to the provided background and also
remove existing shadows and reflections.
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Figure 6. Qualitative results for object relighting. The model is able to relight the object according to the provided background and also
remove existing shadows and reflections.
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Figure 7. Qualitative results for object relighting. The model is able to relight the object according to the provided background and also
remove existing shadows and reflections.



Figure 8. Qualitative results for controllable image relighting.



Figure 9. Qualitative results for object image restoration.



Figure 10. Qualitative results for object image restoration.
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