
Doppler-Aware LiDAR-RADAR Fusion for Weather-Robust 3D Detection

Supplementary Material

1. Implementation Details
Following the official paper of K-RADAR dataset, point
clouds within the driving corridor were used for the exper-
iment, with the x-axis range (0, 72m), y-axis range (-6.4,
6.4m), and z-axis range (-2, 6m). The voxel size was set
to 0.4 × 0.4 × 0.4m, and the preprocessing bin size with
∆d was set to 0.2. The number of MPII and stages was
set to b=3. Training was conducted with a batch size of 4
using the Adam optimizer with lr=1e-3, β1=0.9, β2=0.999
until performance convergence. A single A6000 GPU is uti-
lized for training and evaluation. The total training time is
around 1∼1.5 days with full K-RADAR trainset. The cur-
rent inference speed is around 20ms per sample, which is
below real-time. However, this is primarily due to the un-
optimized NumPy-based neighbor search. Replacing it with
a PyTorch implementation or using TensorRT is expected
to significantly improve the speed, potentially beyond real-
time.

2. Additional Quantitative Comparison
We report quantitative comparison with additional baselines
[2], student model of [1], and [4]. Those were not included
in the main comparison for the following reasons: [1] fuses
camera data in addition to LiDAR and radar, and [2] uses a
LiDAR–4D radar fusion model as the teacher, but explores
a different KD strategy for the student. We believe DLR-
Fusion could also benefit from such a KD, and thus did not
consider it a direct comparison. [3] is a recent work utilizing
the denoising strategy. Since we believe that a broader com-
parison is valuable, therefore the results were summarized
in the extended Table 1. As shown, our DLRFusion shows
comparable results to the models that use camera input or
KD, and even surpasses both the teacher and student mod-
els of [1] under IoU=0.5. While [4] benefits from denoising
strategies, our method also shows superior performance in
several aspects such as APBEV at IoU=0.3.

Table 1. Quantitative comparison with more baselines.

IoU=0.3 IoU=0.5
APBEV AP3D APBEV AP3D

3D-LRF [2] 84.0 74.8 73.6 45.2
Teacher of [1] 82.1 73.2 71.3 40.4
Student of [1] 83.3 75.6 72.4 43.3
L4DR [4] 79.5 78.0 77.5 53.5
DLRFusion 82.9 74.8 73.2 45.7

3. Further Qualitative Analysis

We provide more qualitative detection results on K-RADAR
dataset under various weather conditions. The qualitative
detection results of RTNH [7], RTNH† [7], PointPillars [5],
VoxelNext [3], InterFusion [8], BEVFusion† [6], and DL-
RFusion (ours) are reported. Fig. 1 shows overall quali-
tative results extended from the Fig. 3 in the main paper.
Fig. 2 ∼ 8 shows results under normal, overcast, fog, rain,
sleet, light snow and heavy snow, respectively. As shown
in the figures, our DLRFusion achieves the most accurate
classification and precise regression across various weather
conditions. This demonstrates the effective fusion of Li-
DAR and 4D RADAR’s power and Doppler. Specifically,
LiDAR-based methods experience misdetections and incor-
rect detections due to adverse weather noise and occlu-
sion. In environments such as fog, rain, sleet, and snow,
LiDAR points significantly decrease, and in rainy condi-
tions, the LiDAR point distribution becomes scattered. In
contrast, RADAR-based methods struggle with accurately
predicting bounding boxes due to RADAR’s weaker struc-
tural boundary information. In some cases, RADAR can
confuse structures with objects, especially when power in-
formation alone is present in areas where no objects should
exist. Other RADAR-LiDAR fusion methods often face dif-
ficulties when one modality is unclear, making it challeng-
ing to determine which modality’s results to trust. In con-
trast, our method can discern non-object areas even when
confusion arises between modalities. Through multi-path
interaction, it recognizes when dynamic information is in-
sufficient, even when power is strong. As demonstrated in
the sample in Fig. 7 on the right, our method shows robust
performance, accurately aligning the direction of vehicles,
even when their trajectories are not perfectly linear.
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Figure 1. Visual comparison of (a) RTNH, (b) RTNH†, (c) PointPillars, (d) VoxelNext, (e) InterFusion, (f) BEVFusion†, and (g) DLRFusion
(ours) on K-RADAR dataset. Each column shows a sample from normal, overcast, fog, rain, and heavy snow conditions. (a) ∼ (g) depict
LiDAR and RADAR in BEV, while (h) shows our 3D results in range view with camera and LiDAR. The red represents the ground truth
(GT), while the black represents the prediction.
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Figure 2. Additional results under normal conditions of (a) RTNH [7], (b) RTNH†[7], (c) PointPillars [5], (d) VoxelNext [3], (e) Inter-
Fusion [8], (f) BEVFusion† [6], and (g) DLRFusion (ours) with LiDAR and 4D RADAR in Bird’s Eye View. The top image depicts the
detection results of DLRFusion in 3D range view, with camera and LiDAR projection. The red represents the ground truth (GT), while the
black represents the prediction.
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Figure 3. Additional results under overcast conditions of (a) RTNH [7], (b) RTNH†[7], (c) PointPillars [5], (d) VoxelNext [3], (e) Inter-
Fusion [8], (f) BEVFusion† [6], and (g) DLRFusion (ours) with LiDAR and 4D RADAR in Bird’s Eye View. The top image depicts the
detection results of DLRFusion in 3D range view, with camera and LiDAR projection. The red represents the ground truth (GT), while the
black represents the prediction.
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Figure 4. Additional results under fog conditions of (a) RTNH [7], (b) RTNH†[7], (c) PointPillars [5], (d) VoxelNext [3], (e) InterFusion [8],
(f) BEVFusion† [6], and (g) DLRFusion (ours) with LiDAR and 4D RADAR in Bird’s Eye View. The top image depicts the detection
results of DLRFusion in 3D range view, with camera and LiDAR projection. The red represents the ground truth (GT), while the black
represents the prediction.
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Figure 5. Additional results under rain conditions of (a) RTNH [7], (b) RTNH†[7], (c) PointPillars [5], (d) VoxelNext [3], (e) InterFu-
sion [8], (f) BEVFusion† [6], and (g) DLRFusion (ours) with LiDAR and 4D RADAR in Bird’s Eye View. The top image depicts the
detection results of DLRFusion in 3D range view, with camera and LiDAR projection. The red represents the ground truth (GT), while the
black represents the prediction.
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Figure 6. Additional results under sleet conditions of (a) RTNH [7], (b) RTNH†[7], (c) PointPillars [5], (d) VoxelNext [3], (e) InterFu-
sion [8], (f) BEVFusion† [6], and (g) DLRFusion (ours) with LiDAR and 4D RADAR in Bird’s Eye View. The top image depicts the
detection results of DLRFusion in 3D range view, with camera and LiDAR projection. The red represents the ground truth (GT), while the
black represents the prediction.
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Figure 7. Additional results under light snow conditions of (a) RTNH [7], (b) RTNH†[7], (c) PointPillars [5], (d) VoxelNext [3], (e)
InterFusion [8], (f) BEVFusion† [6], and (g) DLRFusion (ours) with LiDAR and 4D RADAR in Bird’s Eye View. The top image depicts
the 3D detection results of DLRFusion in range view, with camera and LiDAR projection. The red represents the ground truth (GT), while
the black represents the prediction.
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Figure 8. Additional results under heavy snow conditions of (a) RTNH [7], (b) RTNH†[7], (c) PointPillars [5], (d) VoxelNext [3], (e)
InterFusion [8], (f) BEVFusion† [6], and (g) DLRFusion (ours) with LiDAR and 4D RADAR in Bird’s Eye View. The top image depicts
the detection results of DLRFusion in 3D range view, with camera and LiDAR projection. The red represents the ground truth (GT), while
the black represents the prediction.
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