
GaussRender: Learning 3D Occupancy with Gaussian Rendering

Supplementary Material

A. Datasets

SurroundOcc-nuScenes [54] and Occ3D-nuScenes [50]

are derived from the nuScenes dataset [3]. nuScenes pro-

vides 1000 scenes of surround view driving scenes in

Boston and Singapore split in three sets train/val/test of size

700/150/150 scenes. Each comprises 20 seconds long and is

fully annotated at 2Hz using one ground truth from 5 radars,

6 cameras at resolution 900 × 1600 pixels, one LiDAR,

and one IMU. From the LiDAR annotations, SurroundOcc-

nuScenes [54] derived a 3D grid of shape [200, 200, 16]
with a range in [−50, 50] × [−50, 50] × [−5, 3] meters at

a spatial resolution of [0.5, 0.5, 0.5] meters, annotated with

17 different classes, 1 representing empty and 16 for the

semantics. The Occ3d-nuScenes [50] dataset has a lower

voxel size of 0.4 meters in all directions while keeping

the same voxel grid shape with a range of [−40, 40] ×
[−40, 40] × [−1, 5.4] meters. It contains 18 classes: 1 rep-

resenting empty, 16 for the semantics, and 1 for others.

SSCBench-Kitti360 [31] is derived from the Kitti360

dataset [34]. Kitti360 consists of over 320k images shot

by 2 front cameras at a resolution 376 × 1408 pixels and

two fisheye cameras in surburban areas covering a driving

distance of 73.7km. Only one camera is used in the 3D oc-

cupancy task. SSCBench-Kitti360 [31] annotates for each

sequence a voxel grid of shape [256, 256, 32] with a range

in [0, 51.2]× [−25.6, 25.6]× [−2, 4.4] meters at a voxel res-

olution of 0.2 in all directions. The provided voxel grid is

annotated with 19 classes: one is used to designate empty

voxels, and the 18 other are used for the semantic classes.

B. Models and implementation details

We integrate our rendering module and associated loss into

three different models: SurroundOcc [54] (multi-scale

voxel-based approach), TPVFormer [15] (triplane-based

approach), and Symphonies [19] (voxel-with-instance

query-based approach). Each model is retrained using the

same training setting, following the optimization param-

eters from SurroundOcc. No extensive hyperparameter

searches are conducted on the learning rate; the goal is

to demonstrate that the loss can be integrated at minimal

cost into existing pipelines. All models are trained for 20

epochs on 4 A100 or H100 GPUs with a batch size of 1,

using an AdamW optimizer with a learning rate of 2e−4

and a weight decay of 0.01. For each combination of mod-

els and datasets, we evaluate existing checkpoints if pro-

vided; otherwise, we report the scores from previous papers

when available or we re-train the models. Note that we used

D
at

a Tr. time Memory usage

Model (HH:MM) (GB)

TPVFormer 21:44 25.3GB

w/ GaussRender 24:00 +10.4% 28.1GB +11.1%

SurroundOcc 26:38 23.0GB

S
u
r.

O
cc

-n
u
sc

w/ GaussRender 29:19 +10.5% 24.2GB +5.2%

TPVFormer 7:02 29.3GB

w/ GaussRender 8:16 +14.0% 31.7GB +8.2%

SurroundOcc 11:12 15.5GB

S
S

C
B

.K
.3

6
0

w/ GaussRender 11:56 +6.1% 17.6GB +13.5%

Table 7. Training time and GPU memory usage across models

and datasets without or with our module using four renderings per

scene, two for BeV (ground truth and predictions), and two for

another camera (ground truth and predictions). Test performed on

a 40GB A100.

the official checkpoint for Symphonies [19] while noticing

there is a discrepancy in IoU / mIoU between the reported

value in the paper and the actual one of the official check-

point, as explained in their GitHub issue 1.

C. Computational cost

Our module introduces a computation overhead for each

rendering it performs. For a given input scene, we generate

two views (one ‘cam’ and one ‘bev’), and for each view, we

render both the predictions and the ground truth, resulting

in a total of four renderings per iteration.

As reported in Tab. 7, training with GaussRender incurs

a modest increase in memory and computation time (10%),

while using high-resolution renderings. This overhead can

be further reduced by pre-selecting camera locations, allow-

ing annotation renderings (the two ground-truth renderings)

to be pre-processed in advance. Additionally, lower render-

ing resolutions can be used if needed.

While GaussRender introduces a small per-iteration cost,

it actually accelerates learning. A key observation is that

models using GaussRender reach the same performance

level as their baseline counterpart 17% faster. Overall, de-

spite a minor increase in computational overhead, Gauss-

Render ultimately reduces the total training time required

to achieve comparable or superior performance.

D. BeV metrics.

Additionally, we evaluate some Bird’s-Eye-View (BeV)

metrics — critical for downstream motion forecasting and

1https://github.com/hustvl/Symphonies/issues/5

1

Dataset Model IoUBeV (↑) mIoUBeV (↑)

TPVFormer [15] 58.16 28.48

SurroundOcc- w/ GaussRender 59.20 +1.04 28.73 +0.25

nuSc [54] SurroundOcc [54] 58.60 28.26

w/ GaussRender 60.55 +1.95 28.64 +0.38

TPVFormer [15] 52.95 29.72

Occ3D- w/ GaussRender 54.35 +1.40 30.26 +0.54

nusc [50] SurroundOcc [54] 53.52 28.98

w/ GaussRender 55.65 +2.13 30.50 +1.52

Table 8. Impact of GaussRender on BeV metrics. Comparison

of BeV metrics (IoUBeV, mIoUBeV) across datasets. Best results

per dataset/metric are in bold with green performance deltas.

planning — measuring spatial accuracy on the horizontal

plane using IoUBeV and mIoUBeV that capture different as-

pects of spatial understanding.

For this study, we compute the orthographic BeV image

for both the prediction and the ground truth, following the

rendering procedure of Sec. 3.3 for ground truth. The class

assigned to the pixel p is the one corresponding to the maxi-

mal value of Cp. Then, we compute IoU (binary occupancy,

full vs empty) and mIoU (semantic occupancy) by compar-

ing the two images.

Our analysis is presented in Tab. 8. We observe that

the use of GaussRender enhances both metrics simulta-

neously, with systematic gains associated with different

combinations of datasets and models. Both TPVFormer

and SurroundOcc show significant improvements across

all datasets: Occ3d-nuScenes and SurroundOcc-nuScenes

and evaluations. This evaluation highlights that the use of

GaussRender not only improves 3D occupancy predictions

but also enhances consistency with BeV and sensor obser-

vations.

E. Ablations

E.1. Gaussian scaling

An important parameter in our rendering process is the

fixed size of the Gaussians representing voxels. To study

its impact, we train a TPVFormer [15] model on Occ3d-

nuScenes [50], varying the Gaussian scale for both ground-

truth and predicted renderings. We train models using only

the 2D rendering losses (Eq. 6), excluding the usual 3D

voxel losses to isolate the effect of scale on rendering met-

rics.

Our results, shown in Fig. 4, highlight the importance of

the Gaussian scale. If the Gaussians are too large, only a few

will cover the image, and the loss will be backpropagated

mainly from the nearest ones. If they are too small, gaps

appear between voxels, leading to sparse activations and a

model that renders mostly the empty class, yielding poor

0.01 0.10 0.20 0.25 0.30 0.40 0.50
0

10

20

30

40

Gaussian scale (s)

V
al

u
e

(%
)

IoU (↑)

mIoU (↑)

Figure 4. Impact of fixed Gaussian scales on 3D mIoU and IoU

using TPVFormer [15] trained using only L2D without L3D on 20%

of Occ3d-nuScenes [50] validation dataset.

(a) σ = 0.06 (b) σ = 0.2 (c) σ = 0.4

(d) σ = 0.06 (e) σ = 0.2

Figure 5. Visualization of different Gaussianized voxels for dif-

ferent datasets and scales. The first row represents data from

Occ3d-nuScenes [50] and the second and third rows are from

SSCBench-Kitti360 [31].

metrics.

Theoretically, the optimal size should correlate with

the voxel size. For Occ3d-nuScenes and SurroundOcc-

nuScenes, the optimal scale is s = 0.25 and s = 0.20, while

for SSCBench-KITTI360, it is s = 0.1. This aligns with

our intuition: a voxel should be represented by a spherical

Gaussian with a standard deviation such that 2s = c, where

c is the voxel side.

Qualitatively, Fig. 4 shows the effect of scale on render-

ing, confirming the need for a balanced Gaussian size to

avoid either sparse activation or excessive concentration on

nearby elements.

E.2. Loss balance

We investigate the importance of the balance λ between the

2D loss and the 3D loss. If the weight of the 2D loss is

too high, there is a risk of optimizing the image rendering

at the expense of voxel predictions. Conversely, if the 2D

loss is too low, its contribution to the learning process may

be overlooked. To analyze this, we vary the contribution λ

of the 2D loss and study the impact on the final metrics, as

reported in Fig. 6. Based on the training results of TPV-

Former [15] on a subset of Occ3D-nuScenes [50], we set

2

1 5 10 15 20
25

30

35

40

Lambda (λ)

V
al

u
e

(%
)

IoU (↑)

mIoU (↑)

Figure 6. Impact of different the contribution λ of L2D on 3D

semantic occupancy performance. The architecture used is TPV-

Former [15]. Models are trained using a combination of L2D and

L3D with varying λ values and evaluated on 3D IoU and mIoU.

We train and evaluate the models on 20% of Occ3D-nuScenes [50]

training and validation datasets.

the weight to λ = 15.

E.3. Cameras

For a given input, we can position as many cameras as

needed to render multiple views. In this experiment, we

explore using multiple cameras by selecting from the six

available views. While, in theory, more cameras could pro-

vide more accurate gradients, we observe in practice that it

does not significantly impact the final results (Fig. 7). Since

additional cameras introduce computational overhead, we

opt to render from a single camera per iteration, changing

its position across batches according to the strategy defined

in Sec. 3.2.

E.4. Camera strategies

• Sensor Strategy: Cameras are placed at the original sen-

sor locations and orientations as provided in the dataset.

• Elevated Strategy: Each camera is lifted and tilted

downward. This modification increases the vertical field

of view, providing a top-down perspective that reduces

self-occlusion and captures a broader context of the scene.

• Elevated + Around Strategy: This strategy combines

elevation and downward tilt with additional random dis-

placements around the ego vehicle—up to half the max-

imum scene range. It allows observing the scene from

novel angles while maintaining a consistent overhead

viewpoint, improving the visibility of occluded voxels.

• Fully Random Strategy: Cameras are randomly placed

throughout the scene, applying pitch and yaw perturba-

tions and varying distances from the ego-vehicle. While

this increases the diversity of viewpoints, it also intro-

duces inconsistency and often places cameras in less in-

formative positions (e.g., viewing empty space).

• Dynamic Strategy: Cameras are elevated and positioned

at random distances along a circular ring. However, each

1 2 3 4 5
25

30

35

40

Number of Cameras

V
al

u
e

(%
)

IoU (↑)

mIoU (↑)

Figure 7. Impact of the number of cameras on 3D semantic

occupancy performance. The architecture used is TPVFormer

[15]. Models are trained with varying numbers of cameras and

evaluated on 3D IoU and mIoU using 20% of Occ3d-nuScenes

training and validation set.

camera is oriented to look at the element with the high-

est 3D cross-entropy. In other words, the camera focuses

on a region where it made the largest prediction error. It

appears that its supervision signal does not help much the

training.

F. Scores detailed per class

The following tables give the detailed IoU and mIoU scores

of the models studied for each dataset. Tab. 10 concerns

the Occ3D-nuScenes dataset [50], Tab. 11 the SSCBench-

KITTI360 dataset [31] and Tab. 9 the SurroundOcc-

nuScenes dataset [54]. The variations by class appear to

be due to learning variance, which is why it makes more

sense to look at the overall IoU and RayIoU metrics, rather

than looking for intrinsic reasons.

G. Qualitative results

In Fig. 8 and Fig. 9, we respectively present qualitative

results on randomly selected scenes from SurroundOcc-

nuScenes [54] and Occ3d-nuScenes datasets [50]. We also

provide complete gifs in our github.

3

Model IoU mIoU �
b

ar
ri

er

�
b

ic
y

cl
e

�
b
u

s

�
ca

r

�
co

n
st

.
v
eh

.

�
m

o
to

rc
y

cl
e

�
p

ed
es

tr
ia

n

�
tr

af
fi

c
co

n
e

�
tr

ai
le

r

�
tr

u
ck

�
d

ri
v
e.

su
f.

�
o

th
er

fl
at

�
si

d
ew

al
k

�
te

rr
ai

n

�
m

an
m

ad
e

�
v
eg

et
at

io
n

MonoScene [4] 23.96 7.31 4.03 0.35 8.00 8.04 2.90 0.28 1.16 0.67 4.01 4.35 27.72 5.20 15.13 11.29 9.03 14.86

Atlas [42] 28.66 15.00 10.64 5.68 19.66 24.94 8.90 8.84 6.47 3.28 10.42 16.21 34.86 15.46 21.89 20.95 11.21 20.54

BEVFormer [32] 30.50 16.75 14.22 6.58 23.46 28.28 8.66 10.77 6.64 4.05 11.20 17.78 37.28 18.00 22.88 22.17 13.80 22.21

TPVFormer-lidar [15] 11.51 11.66 16.14 7.17 22.63 17.13 8.83 11.39 10.46 8.23 9.43 17.02 8.07 13.64 13.85 10.34 4.90 7.37

OccFormer [61] 31.39 19.03 18.65 10.41 23.92 30.29 10.31 14.19 13.59 10.13 12.49 20.77 38.78 19.79 24.19 22.21 13.48 21.35

GaussianFormer [18] 29.83 19.10 19.52 11.26 26.11 29.78 10.47 13.83 12.58 8.67 12.74 21.57 39.63 23.28 24.46 22.99 9.59 19.12

GaussianFormerv2 [16] 30.56 20.02 20.15 12.99 27.61 30.23 11.19 15.31 12.64 9.63 13.31 22.26 39.68 23.47 25.62 23.20 12.25 20.73

TPVFormer [15] 30.86 17.10 15.96 5.31 23.86 27.32 9.79 8.74 7.09 5.20 10.97 19.22 38.87 21.25 24.26 23.15 11.73 20.81

w/ GaussRender 32.05 20.85 20.2 13.06 28.95 30.96 11.26 16.69 13.64 10.57 12.77 22.58 40.69 23.49 26.41 24.97 14.41 22.94

(gain) 1.19 3.75 4.24 7.75 5.09 3.64 1.47 7.95 6.55 5.37 1.80 3.36 1.82 2.24 2.15 1.82 2.68 2.13

SurroundOcc [54] 31.49 20.30 20.59 11.68 28.06 30.86 10.70 15.14 14.09 12.06 14.38 22.26 37.29 23.70 24.49 22.77 14.89 21.86

w/ GaussRender 32.61 20.82 20.32 13.22 28.32 31.05 10.92 15.65 12.84 8.91 13.29 22.76 41.22 24.48 26.38 25.20 15.31 23.25

(gain) 1.12 0.52 -0.27 1.54 0.26 0.19 0.22 0.51 -1.25 -3.15 -1.09 0.50 3.93 0.78 1.89 2.43 0.42 1.39

Table 9. Semantic voxel occupancy results on the SurroundOcc-NuScenes [54] validation set. The best results are in bold. Training

models with our module GaussRender achieves state-of-the-art performance. Previous results are reported from [16].

Method Input mIoU �
o
th

er
s

�
b
ar

ri
er

�
b
ic

y
cl

e

�
b
u
s

�
ca

r

�
co

n
st

.
v
eh

.

�
m

o
to

rc
y
cl

e

�
p
ed

es
tr

ia
n

�
tr

af
fi

c
co

n
e

�
tr

ai
le

r

�
tr

u
ck

�
d
ri

v
e.

su
f.

�
o
th

er
fl

at

�
si

d
ew

al
k

�
te

rr
ai

n

�
m

an
m

ad
e

�
v
eg

et
at

io
n

MonoScene Voxels 6.06 1.75 7.23 4.26 4.93 9.38 5.67 3.98 3.01 5.90 4.45 7.17 14.91 6.32 7.92 7.43 1.01 7.65

BEVDet Voxels 19.38 4.39 30.31 0.23 32.26 34.47 12.97 10.34 10.36 6.26 8.93 23.65 52.27 24.61 26.06 22.31 15.04 15.10

OccFormer Voxels 21.93 5.94 30.29 12.32 34.40 39.17 14.44 16.45 17.22 9.27 13.90 26.36 50.99 30.96 34.66 22.73 6.76 6.97

BEVStereo Voxels 24.51 5.73 38.41 7.88 38.70 41.20 17.56 17.33 14.69 10.31 16.84 29.62 54.08 28.92 32.68 26.54 18.74 17.49

BEVFormer Voxels 26.88 5.85 37.83 17.87 40.44 42.43 7.36 23.88 21.81 20.98 22.38 30.70 55.35 28.36 36.0 28.06 20.04 17.69

CTF-Occ Voxels 28.53 8.09 39.33 20.56 38.29 42.24 16.93 24.52 22.72 21.05 22.98 31.11 53.33 33.84 37.98 33.23 20.79 18.0

RenderOcc Lidar 23.93 5.69 27.56 14.36 19.91 20.56 11.96 12.42 12.14 14.34 20.81 18.94 68.85 33.35 42.01 43.94 17.36 22.61

RenderOcc Voxels+Lidar 26.11 4.84 31.72 10.72 27.67 26.45 13.87 18.2 17.67 17.84 21.19 23.25 63.2 36.42 46.21 44.26 19.58 20.72

TPVFormer Voxels 27.83 7.22 38.90 13.67 40.78 45.90 17.23 19.99 18.85 14.30 26.69 34.17 55.65 35.47 37.55 30.70 19.40 16.78

w/ GaussRender Voxels 30.48 9.84 42.3 24.09 41.79 46.49 18.22 25.85 25.06 22.53 22.9 33.34 58.86 33.19 36.57 31.84 23.55 21.8

(gain) 2.65 2.62 3.40 10.42 1.01 0.59 0.99 5.86 6.21 8.23 -3.79 -0.83 3.21 -2.28 -0.98 1.14 4.15 5.02

SurroundOcc Voxels 29.21 8.64 40.12 23.36 39.89 45.23 17.99 24.91 22.66 18.11 21.64 32.5 57.6 34.1 35.68 32.54 21.27 20.27

w/ GaussRender Voxels 30.38 8.87 40.98 23.25 43.76 46.37 19.49 25.2 23.96 19.08 25.56 33.65 58.37 33.28 36.41 33.21 22.76 22.19

(gain) 1.17 0.23 0.86 -0.11 3.87 1.14 1.50 0.29 1.30 0.97 3.92 1.15 0.77 -0.82 0.73 0.67 1.49 1.92

Table 10. Semantic voxel occupancy results on the Occ3D-nuScenes [50] validation set. The best results are in bold. Training models

with our module GaussRender achieves state-of-the-art performance. Previous results are reported from [16, 43].

Method IoU mIoU �
ca

r

�
b
ic

y
cl

e

�
m

o
to

rc
y
cl

e

�
tr

u
ck

�
o
th

er
v
eh

.

�
p
er

so
n

�
ro

ad

�
p
ar

k
in

g

�
si

d
ew

al
k

�
o
th

er
g
rn

d
.

�
b
u
il

d
in

g

�
fe

n
ce

�
v
eg

et
at

io
n

�
te

rr
ai

n

�
p
o
le

�
tr

af
.-

si
g
n

�
o
th

er
st

ru
ct

.

�
o
th

er
o
b
j.

MonoScene * 37.87 12.31 19.34 0.43 0.58 8.02 2.03 0.86 48.35 11.38 28.13 3.32 32.89 3.53 26.15 16.75 6.92 5.67 4.20 3.09

VoxFormer * 38.76 11.91 17.84 1.16 0.89 4.56 2.06 1.63 47.01 9.67 27.21 2.89 31.18 4.97 28.99 14.69 6.51 6.92 3.79 2.43

OccFormer * 40.27 13.81 22.58 0.66 0.26 9.89 3.82 2.77 54.30 13.44 31.53 3.55 36.42 4.80 31.00 19.51 7.77 8.51 6.95 4.60

SurroundOcc 38.51 13.08 21.31 0.0 0.0 6.05 4.29 0.0 53.88 12.56 30.89 2.57 34.93 3.59 29.03 16.98 5.61 6.66 4.39 2.62

w/ GaussRender 38.62 13.34 21.61 0.0 0.0 6.75 4.5 0.0 53.64 11.93 30.24 2.67 35.01 4.55 29.81 17.32 6.19 8.49 4.8 2.59

(gain) 0.11 0.26 0.30 0.0 0.0 0.70 0.21 0.0 -0.24 -0.63 -0.65 0.10 0.08 0.96 0.78 0.34 0.58 1.83 0.41 -0.03

Symphonies (official checkpoint) 43.40 17.82 26.86 4.21 4.92 14.19 7.67 16.79 57.31 13.60 35.25 4.58 39.20 7.96 34.23 19.20 8.22 16.79 6.03 6.03

w/ GaussRender 44.08 18.11 27.37 3.24 5.12 14.69 8.76 16.70 58.05 13.87 35.70 4.76 40.09 7.88 34.76 19.20 8.22 16.49 8.64 6.50

(gain) +0.68 +0.29 +0.51 -0.97 +0.20 +0.50 +1.09 -0.09 +0.74 +0.27 +0.45 +0.18 +0.89 -0.08 +0.53 0.00 0.00 -0.30 +2.61 +0.47

Table 11. Semantic voxel occupancy results on the SSCBench-KITTI360 [31] test set. The best results are in bold. Training models

with our module GaussRender achieves state-of-the-art performance. Previous results are reported from [19].

4

Figure 8. Qualitative predictions of a SurroundOcc [54] model trained with GaussRender on the SurroundOcc-nuScenes [54]

dataset. We display the six input camera images (top left), the rendered predictions (bottom left), the BeV ground-truth (top right) and

BeV prediction (bottom left). The scene is randomly selected from the validation set and we show predictions at two different timesteps.

5

Figure 9. Qualitative predictions of a TPVFormer [15] model trained with GaussRender on the Occ3d-nuScenes [50] dataset. We

display the six input camera images (top left), the rendered predictions (bottom left), the BeV ground-truth (top right) and BeV prediction

(bottom left). The scene is randomly selected from the validation set and we show predictions at two different timesteps.

6

