
Hierarchical-aware Orthogonal Disentanglement Framework for Fine-grained
Skeleton-based Action Recognition

Supplementary Material

In the supplemental material, we provide:
• more implementation details in Sec. A,
• more qualitative results in Sec. B,
• more quantitative results in Sec. C.

A. Implementation Details

A.1. Details of K-means hierarchical discovery.
Since most action recognition datasets only provide single-
level labels, we consider using deep clustering algorithm
to discover the hierarchical structure of classes within the
dataset. Specifically, we use the traditional K-means algo-
rithm to divide all samples into K clusters. The clustering
assignment matrix S ∈ RK×Nc represents the hierarchical
relationship of classes, where the element Sk,n indicates the
number of samples from the n-th class in the k-th parent
cluster.

A.2. Training Details
Backbone. In this paper, we use HD-GCN [4] as our back-
bone. Specifically, we employ a 10-layer network, where
each layer consists of an HD-Gconv block and a multi-scale
temporal convolution block. The output channel configura-
tion for each layer is set to 64-64-64-64-128-128-128-256-
256-256. Theoretically, our proposed Hierarchical-aware
Orthogonal Disentanglement framework (HiOD) is applica-
ble to any skeleton-based action recognition backbone. In
Section C.5, we also present experimental results using dif-
ferent backbones.
FineGYM dataset details. We use the method provided
in Pyskl [3] to obtain the 2D skeleton sequences from the
FineGYM dataset [7]. The skeleton contains 17 joints, with
128 input frames and 3 input channels. The third dimension
of the channel represents the confidence score. The accu-
racy of various methods on the FineGYM dataset is primar-
ily sourced from previous works [1, 5], while the accuracy
of the HD-GCN method is based on our experimental re-
sults. In our experiments, we report the Top-1 accuracy of
our method on the FineGYM dataset.
FineGYM class label. We present the classes of gymnastic
actions and their corresponding label descriptions involved
in the t-SNE visualization experiment in Table 1. Classes
74, 75 and 76 are fine-grained action classes that are easily
confused, and classes 2, 3 and 4 are also fine-grained action
classes prone to confusion.
FSD-10 dataset details. The skeleton of FSD-10 dataset
contains 25 joints, with 1500 input frames and 3 input chan-
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Figure 1. t-SNE visualization of granularity disentanglement.
‘Fine’ represents the disentangled fine-grained features, while
‘Coarse’ represents the disentangled coarse-grained features. De-
tailed descriptions of all class labels can be found in Table 1.

nels. We follow the data preprocessing method proposed in
[5]. To balance speed and accuracy, we set the size of the
random cropping window to 600.

B. More Qualitative Results

B.1. Granularity Disentanglement Results
To demonstrate the effectiveness of our method in achiev-
ing granularity disentanglement, we utilize t-SNE to visual-
ize the distribution of coarse-grained and fine-grained fea-
tures in the high-level semantic space on the FineGYM [7]
dataset, as illustrated in Figure 1. The results indicate that
our method effectively maintains a clear separation between
the coarse-grained and fine-grained feature spaces, thereby
mitigating the interference of coarse-grained features with
fine-grained features during training. Furthermore, we ob-
serve that fine-grained features of easily confused actions
exhibit superior inter-class separability compared to coarse-
grained features, a characteristic that is essential for fine-
grained action recognition. This benefits from the hier-
archical prototype contrastive learning strategy. Specifi-
cally, the hard prototype contrastive loss ensures the ac-



Class id Event Label

2 Vaulting Horse round-off, flic-flac on, stretched salto backward with 1 turn off
3 Vaulting Horse round-off, flic-flac on, stretched salto backward with 1.5 turn off
4 Vaulting Horse round-off, flic-flac on, stretched salto backward with 2.5 turn off
7 Floor Exercise switch leap with 1 turn

74 Uneven Bar pike sole circle backward with 1 turn to handstand
75 Uneven Bar pike sole circle backward with 0.5 turn to handstand
76 Uneven Bar pike sole circle backward to handstand
86 Uneven Bar clear pike circle backward to handstand
88 Uneven Bar stalder backward to handstand

Table 1. Description of the classes and labels involved in t-SNE visualization. Classes 74, 75 and 76 are fine-grained action classes that
are easily confused, and classes 2, 3 and 4 are also fine-grained action classes prone to confusion.

curacy of fine-grained prototypes, promoting the separa-
tion of fine-grained features. Meanwhile, the soft prototype
weighted contrastive loss enables coarse-grained features to
learn shared semantic representations from similar classes,
resulting in inter-class similarity. Consequently, coarse-
grained features effectively represent higher-level parent
classes, which in turn implicitly facilitates the learning of
fine-grained features.

B.2. Class Activation Map Visualization
We employed Grad-CAM [6] to visualize the coarse-
grained and fine-grained features, as shown in Figure 2.
CAM highlights the class-specific discriminative regions,
i.e. specific joints and frames. The results show that coarse-
grained features tend to focus on a larger range of frame
sequences and more joints, while fine-grained features con-
centrate on more specific areas. This suggests that coarse-
grained features capture the global motion patterns of high-
level parent classes, while fine-grained features focus on lo-
cal variations in detail. Compared with the HD-GCN, our
method can better locate discriminative regions, both for
coarse-grained and fine-grained features. In addition, we
observed that as classification difficulty increases (from left
to right in Figure 2), the distinction between coarse and fine-
grained features becomes more pronounced. This demon-
strates that our granularity disentanglement strategy effec-
tively discovers the discriminative details and emphasizes
their significance.

C. More Quantitative Experiments
C.1. Effect of basis vector number
We study the effect of changing the number of basis vectors
in the orthogonal basis on action recognition. The experi-
mental results are detailed in Table 2. We set the number of
basis vectors to 20, 40, 60, 80, 100, and 120. The experi-
mental results show that the best effect is achieved when the
number is 80. This may be attributed to the weaker feature

Number of basis vectors Acc(%)

20 93.7
40 93.9
60 94.1
80 94.2
100 94.4
120 94.0
140 93.6

Table 2. Comparison of classification accuracy for number of basis
vectors.

Methods Acc(%)

w/o refine 93.8
MLP refine (1 layer) 93.9
MLP refine (2 layers) 94.0
MLP refine (4 layers) 94.2
MLP refine (6 layers) 94.1
GCN-TCN refine (1 layer) 94.2
GCN-TCN refine (2 layers) 94.4
GCN-TCN refine (3 layers) 94.3

Table 3. Comparison of classification accuracy for effectiveness
of refine module.

representation when the number of basis vectors is low, and
the tendency for the orthogonal basis to capture redundant
information when the count is high.

C.2. Effectiveness of Refine Module
To investigate the specific role of the feature refinement
module, we conducted ablation experiments on the config-
uration of the refinement module, with the results shown in
Table 3. We constructed our refinement module using either
MLPs or GCN-TCN layers. The MLP refines the classifi-
cation vector obtained from global average pooling, while
the GCN-TCN layer refines the fused features Xfuse. We
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Figure 2. From top to bottom, they are CAMs for HD-GCN [4], our coarse-grained features, and our fine-grained features. From left to
right, they are three action samples organized by recognition difficulty, from easy to difficult, along with the recognition accuracy for each
class.

Methods Bc
s Bc

t Bf
s Bf

t Bshared Acc(%)

Spatial-coarse ! ! 91.8
Spatial-fine ! ! 93.4

Temporal-coarse ! ! 86.7
Temporal-fine ! ! 77.9

Spatial ! ! ! 93.5
Temporal ! ! ! 91.4

Without shared bases ! ! ! ! 92.3
All ! ! ! ! ! 94.4

Table 4. Comparison of top-1 accuracy using different orthogonal
bases during the inference phase on the FineGYM dataset.

observed that the performance was the worst without the
refinement module, and the type of refinement module had
little impact on accuracy. This indicates that the refinement
module primarily serves to stabilize the feature decoupling
process and enhance the independence of multi-granularity
features, rather than relying on a specific network architec-
ture.

C.3. Importance of Different Orthogonal Bases

During the inference phase, we quantitatively investigate
the importance of each orthogonal basis for action recog-
nition using the basis vector masking strategy mentioned in
Section 4.5 of the main text. Specifically, we mask 100% of
the projection coefficients of a particular orthogonal basis
to eliminate its contribution to action recognition. Table 4
presents the specific experimental results. The findings in-
dicate that spatial granularity-aware bases contribute more
significantly to fine-grained action recognition compared to
temporal granularity-aware bases. In the spatial dimension,
fine-grained bases are more important than coarse-grained
bases, while the opposite is true in the temporal dimension.
The removal of shared bases results in a decrease in recog-
nition accuracy, which further illustrates the importance of
shared bases.

Methods Acc (%)

Hierarchical prototypes 93.8
Soft prototypes 94.4

Table 5. Comparison of top-1 accuracy using soft prototypes and
hierarchical prototypes on the FineGYM dataset.

C.4. Comparison between Soft Prototypes and Hi-
erarchical Prototypes

In the hierarchical contrastive learning phase, we compared
the differences between soft prototypes and hierarchical
prototypes. The proposed soft prototype maintains a pro-
totype for each action class using coarse-grained features,
with the number of soft prototypes equal to the total num-
ber of classes. In contrast, hierarchical prototypes main-
tain a prototype for each parent class, where parent classes
are obtained through K-means clustering, and the number
of hierarchical prototypes equals the number of clusters
K. Table 5 shows that using soft prototypes in hierarchical
contrastive learning can achieve higher classification accu-
racy. This is because soft prototypes not only capture shared
parent-class features among similar classes but also pre-
serve certain subclass differences, resulting in more pow-
erful feature representation capabilities.

C.5. Comparison Experiments Using Different
Backbones

To evaluate the generality and robustness of the proposed
Hierarchical-aware Orthogonal Disentanglement frame-
work (HiOD), we conducted comparative experiments us-
ing various backbone networks. The experimental results
are shown in Table 6. The results indicate that our HiOD
method improves accuracy across all backbones, demon-
strating the generalization capability of our approach.
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