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8. Rendering Scheme
Based on [18, 21, 34], we introduce the derivation of the
classic volume rendering equation and extend it to render
iToF measurements based on the Signed Distance Function
(SDF). First, we present the absorption process. This pro-
cess describes how light is attenuated as it passes through
a medium containing particles. The number of particles in
a small volume of length !s is given by ωE!s, where ω
represents the density of particles and E is the area. The
fraction of light passing through the volume is given by
PωE!s

E = Pω!s, where P is the projected area of one par-
ticle. Thus, the change in intensity due to absorption is:

Aout →Ain = →Pω!sAin. (21)

Taking the differential form, we have:

dA

ds
= →ω(s)PA(s) = →ε(s)A(s) (22)

where ε(s) = ω(s)P represens the rate of light attenuation
per unit distance.

Emission describes how light is added to the system from
the particles themselves. The light emitted over a small seg-
ment !s is given by CωPE!s

E , where C(s) is the emission
coefficient. Thus, the emission differential equation is:

dA

ds
= C(s)ω(s)P = C(s)ε(s). (23)

The combined effect of absorption and emission is:

dA

ds
= C(s)ε(s)→ ε(s)A(s)

dA

ds
+ ε(s)A(s) = C(s)ε(s) (24)

To simplify, we recognize the equation in a form where the
product rule applies:

d

ds

(
A(s)e

∫ s
0 ε(x)dx

)
=

dA

ds
e
∫ s
0 ε(x)dx+A(s)ε(s)e

∫ s
0 ε(x)dx

(25)
The Eq. 24 can be rewritten as:

d

ds

(
A(s)e

∫ s
0 ε(x)dx

)
= C(s)ε(s)e

∫ s
0 ε(x)dx (26)

We integrate this equation from the start of the light path
s = 0 to the camera pixel at s = D:

A(D)e
∫D
0 ω(x)dx→A(0) =

∫ D

0

(
C(s)ω(s)e

∫ s
0 ω(x)dx

)
ds (27)

Multiplying both sides by e→
∫ D
0 ε(x)dx, we obtain:

A(D) = A(0)e→
∫D
0 ω(x)dx+

∫ D

0

(
C(s)ω(s)e

∫ s
0 ω(x)dx→

∫D
0 ω(x)dx

)
ds.

(28)
the contribution from ambient light, denoted as A(0), is

considered to be zero. Thus, the equation simplifies further.

A(D) =

∫ D

0

(
C(s)ω(s)e→

∫D
s ω(x)dx

)
ds (29)

While NeRF models particles as self-emitting light
sources that are constant from the same view direction, in
active illumination, C(s) is regarded as the combination of
the light source contribution L(s) and the reflectivity R(s).
For a light source located at s = D, referring to Eq. 21, the
intensity attenuation of the light source is:

L(s+ ϑ)→ L(s) = ε(s)L(s)
∫ s

D

dL

L(s)
=

∫ s

D
ε(x) dx

ln |L(s)|→ ln |L(D)| =
∫ s

D
ε(x) dx

|L(s)|
|L(D)| = e(

∫ s
D ε(x) dx)

L(s) = L(D)e(
∫ s
D ε(x) dx) (30)

Integrating both geometric attenuation and reflectance at-
tenuation, Eq. 29 can be written as:

A(D) =

∫ D

0

(
L(D)R(s)ω(s)

(D → s)2
e→

∫D
s 2ω(x)dx

)
ds (31)

To isolate the contribution of light from a specific segment
[m,n] along the path:

An
m =

∫ n

m

(
L(D)R(s)ε(s)

(D → s)2
e→

∫ D
s 2ε(x)dx

)
ds (32)

We denote t↑ = 0.5(m + n), Assuming(D → s)2 andR(s)
and ε(s) are constants over this segment

An
m =

L(D)Rε

(D → t↑)2

∫ n

m
e→

∫ D
s 2ε(t)dxds (33)

=
L(D)Rε

(D → t↑)2
e→

∫ D
n 2ε(x)dx

∫ n

m
e→2ε(n→s)ds (34)

=
L(D)Rε

(D → t↑)2
e→

∫ D
n 2ε(x)dx

(
e→2ε(n→s)

2ε

) ∣∣∣∣
n

m

(35)

=
L(D)R

(D → t↑)2
e→

∫ D
n 2ε(x)dx(1→ e→2ε(n→m)) (36)



denoteϑ = n→m

Ai =
L(D)R

(D → t↑)2
e→

∫ D
n 2ε(x)dx(1→ e→2εϑi)) (37)

Next, we perform the substitution D → t↑ = t and A0 =
L(D) that represents the initial light intensity. This allows
us to rewrite the formula as:

Ai =
L(D)R

t2
e→

∫ D→t
0 2ε(t) dt

(
1→ e→2εϑi

)
. (38)

By summing the contributions from each segment, we ob-
tain the rendered phase measurement:

Â =
N∑

i=1

e(→
∑i→1

j=1 2εjϑj)(1→ e→2εiϑi)
A0Ri

2t2i
(39)

=
N∑

i=1

Tiϖi
A0Ri

2t2i
(40)

where ϖi =
(
1→ e→2εϑi

)
, Ti =

∏i→1
j=1(1 → ϖj) represents

the accumulated transmittance. From NeuS [34], the den-
sity is represented with the SDF value as:

ω(t) = max

(
→ d

dt!s(SDF (t))

!s(SDF (t))
, 0

)
(41)

∫ ti+1

ti

→ d
dt!s(SDF (t))

!s(SDF (t))
dt = ln

(
!s (SDF (ti))

!s (SDF (ti+1))

)
(42)

We substitute the above conclusion into ϖi =(
1→ e→2εϑi

)
. When → d

dt”s(SDF (t))
”s(SDF (t)) > 0, we have:

ϖi = 1→ e
→

∫ ti+1
ti

2max

(
→ d

dt
!s(SDF (t))

!s(SDF (t)) ,0

)
dt

(43)

= 1→ e→2
∫ ti+1
ti

→ d
dt

!s(SDF (t))

!s(SDF (t)) dt (44)

= 1→ e

(
→2 ln

(
!s(SDF (ti)))

!s(SDF (ti+1))

))

(45)

= 1→ ”2
s (SDF (ti+1)))

”2
s (SDF (ti))

(46)

When → d
dt”s(SDF (t))
”s(SDF (t)) ↑ 0, we have:

ϖi = 1→ e
→

∫ ti+1
ti

2max

(
→ d

dt
!s(SDF (t))

!s(SDF (t)) ,0

)
dt

(47)

= 1→ e→2
∫ ti+1
ti

0dt (48)
= 0 (49)

In summary, we have derived the relationship between ϖi

and the SDF value under active illumination:

ϖi = max

(
”2

s(SDF (ti))→ ”2
s(SDF (ti+1))

”2
s(SDF (ti))

, 0

)
(50)

9. iToF Imaging
In this section, we provide a detailed explanation of the
camera model used in indirect Time-of-Flight (iToF) cam-
eras, as described in [9, 16]. ToF cameras emit amplitude-
modulated infrared signals. These signals can be mathemat-
ically represented as:

g(t) = g1 cos(2ϱft) + g0 (51)

Here, g1 represents the modulation amplitude, which con-
trols the strength of the emitted signal’s modulation. The
symbol f denotes the modulation frequency. The term g0
is the DC offset, representing the constant baseline of the
emitted signal. This modulated signal illuminates the scene.
Light reflected from objects returns to the camera with a
time delay ε0, which depends on the distance to the object.
The camera receives this reflected signal, which can be de-
scribed by:

Srec(t) = R
g1 cos(2ϱft→ 2ϱfς0) + g0

c2ς20
+ e0, (52)

where R represents the reflectivity of the surface. Factors
like material properties, color, and angle of view influence
it. The constant c denotes the speed of light, accounting
for the signal’s travel speed. The parameter tau0 indicates
the time delay of the reflected signal, which is directly re-
lated to the object’s distance. The term e0 represents the
contribution from environmental light. It adds a constant
component to the overall signal received by the camera. we
simplify the components of the received signal as the am-
plitude r1 and the DC component r0. Their corresponding
relationships are expressed as:

r1 = R
g1
c2ς20

, r0 = R
g0
c2ς20

+ e0. (53)

The iToF camera determines the phase shift 2ϱfς0 and
amplitude by multiplying the received signal s(t) with
an internal reference signal b cos(2ϱft → φ). Here, φ
is a programmable phase shift. By substituting s(t) =
r1 cos(2ϱft→2ϱfς0)+r0 into the multiplication, we obtain
the resulting signal:

i(t) = (r1 cos(2ϱft→ 2ϱfς0) + r0) · b cos(2ϱft→ φ).
(54)

Expanding this expression, we have:

i(t) = b [r1 cos(2εft→ 2εfϑ0) cos(2εft→ ϖ) + r0 cos(2εft→ ϖ)]

=
br1
2

cos(ϖ→ 2εfϑ0) +
br1
2

cos(2εft→ 2εfϑ0 → ϖ)

+ br0 cos(2εft→ ϖ).

From the above equation, we can see that the resulting sig-
nal i(t) contains a DC term br1

2 cos(φ → 2ϱfς0) that is re-
lated to the phase φ. It also includes high-frequency compo-



nents. By integrating over time, we can filter out the oscilla-
tory terms, leaving the phase-related components for subse-
quent phase and amplitude calculations. The raw measure-
ments Iϖ captured at programmed phase settings (0°, 90°,
180°, and 270°) can be expressed as:

Iϖ =
r1 · b
2

cos(φ→ 2ϱfς0) + a0, (55)

where a0 represents the combined contribution from envi-
ronmental light. Substituting the programmed phase set-
tings into this equation, we get:

I0 =
r1 · b
2

cos(→2εfϑ0) + a0 =
r1 · b
2

cos(2εfϑ0) + a0

I90 =
r1 · b
2

cos
(ε
2
→ 2εfϑ0

)
+ a0 =

r1 · b
2

(→ sin(2εfϑ0)) + a0

I180 =
r1 · b
2

cos (ε → 2εfϑ0) + a0 =
r1 · b
2

(→ cos(2εfϑ0)) + a0

I270 =
r1 · b
2

cos

(
3ε
2

→ 2εfϑ0

)
+ a0 =

r1 · b
2

sin(2εfϑ0) + a0

From these measurements, the phase shift 2ϱfς0 can be
computed as:

↼ = 2ϱfς0 = arctan

(
I90 → I270
I180 → I0

)
. (56)

By substituting the expressions for I90, I270, I180, and I0,
we obtain::

ω = arctan





(
r1·b
2 (→ sin(2εfϑ0)) + a0

)
→

(
r1·b
2 sin(2εfϑ0) + a0

)

(
r1·b
2 (→ cos(2εfϑ0)) + a0

)
→

(
r1·b
2 cos(2εfϑ0) + a0

)





Simplifying further, we get:

↼ = arctan

(
→r1 · b sin(2ϱfς0)
→r1 · b cos(2ϱfς0)

)

= arctan

(
sin(2ϱfς0)

cos(2ϱfς0)

)
.

Then, the object’s distance is calculated using:

d =
c · ς0
2

=
c↼

4ϱf
. (57)

The amplitude, which encodes information about reflectiv-
ity and illumination, is computed as:

A =
√
(I0 → I180)2 + (I270 → I90)2

=
√
r1b cos2(2ϱfς0) + r1b sin

2(2ϱfς0)

= r1 · b = R
g1

c2ε2
0

· b.

From the above equations, we observe that the amplitude of
the iToF signal is influenced by the scene’s reflectivity R
and the object’s distance. This relationship is also evident
in the rendering formula Eq. 11 we derived.

10. Depth Metrics

We use the following metrics to evaluate the performance:
mean absolute error (MAE), root mean square error of lin-
ear measures (RMSE) and relative accuracy ϑ1 (the fraction
of pixels where the relative error is within a threshold of
1.25). All errors are calculated in meters. The mathemat-
ical expressions of the evaluation metrics are presented in
the following:

Mean Absolute Error: MAE =
1

n

n∑

p

|yp → ŷp|
ŷp

Root Mean Square Error: MSE =

√√√√ 1

n

n∑

p

(yp → ŷp)
2

Threshold: ϑ = % of yp s.t.max

(
yp
ŷp

,
ŷp
yp

)
= ϑ < 1.25

where n denotes the number of valid pixels of a panorama
image, ŷp denotes the depth value in ground truth and yp is
the depth value predicted from networks.

11. Network Details

The Multi-Layer Perceptron (MLP) structure we use is
shown in Fig. 6. Our model consists of simple MLPs: Gφ is
a six-layer MLP, and both R↽ and Fϱ are two-layer MLPs,
each with a hidden dimension of 128.
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Figure 6. Network Structure

12. Effectiveness of the Noise-Weight Loss

We conducted an experiment to evaluate the impact of using
and not using the noise-weight loss term while training. As
shown in Figure 7, the first row is the ground truth depth,
the second row is the depth map without the loss term, and
the third row is the depth map with the loss term. The re-
sults show that using the noise-weight loss term improves
the object details in the depth map.



Ground Truth

Ours w/o ℒ!

Ours w/ ℒ!

Figure 7. Visualization for ablation study on loss term Ln.

Figure 8. Examples from the synthetic dataset.

13. Details of the Datasets
For the synthetic dataset, we use random selection com-
bined with manual screening for each scene, resulting in
different numbers of images for each scene as shown in Tab.
6, and various viewpoints as depicted in Fig. 8.

Table 6. Number of images used in each scenes.

Scenes bathroom2 bedroom living-room bathroom veach-bidir veach-ajar
Images 34 41 38 40 42 56

14. Robustness Analysis Under Noisy Pose
Conditions

To comprehensively evaluate the robustness of our method
against pose estimation errors, we conducted experiments
by introducing controlled Gaussian noise to the input cam-
era poses. We added zero-mean Gaussian noise with vary-

ing standard deviations (STD) ranging from 0.00 to 0.30
meters to the camera positions. As shwon in Table 7 the
evaluation was performed on our synthetic dataset where
ground-truth poses are available, allowing us to isolate the
impact of pose noise on reconstruction quality.

Table 7. Reconstruction quality (MAE in meters) under different
levels of pose noise. Our method maintains robust performance
with STD below 0.05m, which covers typical pose estimation er-
rors in practice.

STD 0.00 0.01 0.02 0.05 0.10 0.15 0.20 0.30
MAE 0.0468 0.0525 0.0650 0.1136 0.1922 0.2629 0.3307 0.5385

15. Comparisons with the Additional Baseline
We provide additional quantitative comparisons with the
state-of-the-art ’Neural RGB-D Surface Reconstruction’
method on six indoor scenes from our dataset.

Table 8. Depth reconstruction error comparison. Our method sig-
nificantly outperforms Neural RGB-D across all test scenes.

Method Bathroom2 Bathroom Bedroom Living-Room Veach-bidir Veach-ajar
RGBD 0.1616 0.0924 0.1361 0.2044 0.2830 0.1195
Ours 0.0427 0.0404 0.0337 0.0820 0.0393 0.0428

16. Ablation Study on Light Source Modeling
To validate our design choice for light representation, we
conducted ablation studies comparing our model against a
simplified point light source parameterization. We imple-
mented a baseline using a single learnable scalar parame-
ter A0 ↓ R1 to represent constant point light intensity. As
shown in Fig. 9, we tested various initialization values rang-
ing from 0.1 to 10.0, as the optimization landscape for such
simplified representations can be highly non-convex.



Figure 9. Reconstruction error across different initialization values
for point light source representation.

17. Visualization of Phase Wrapping

We add wrapping maps shown below to visually demon-
strate the significance of wrapping issues in our evaluation
dataset. Fig. 10 shows iToF depth (top), our results (lower
left), and wrapping periods (lower right).

Figure 10. Visualization of phase wrapping effects.

18. Performance Analysis Under Varying SNR

Signal-to-noise ratio (SNR) is a critical factor affecting iToF
depth quality, as it directly impacts the accuracy of phase
measurements. We systematically evaluate our method’s
performance under different SNR conditions combined
with three common modulation frequencies (20 MHz, 40
MHz, and 60 MHz).

Figure 11. Depth reconstruction error (MAE) under varying SNR
levels and modulation frequencies.

19. Enhanced Visualization of Multi-path In-
terference Effects

Multi-path interference (MPI) occurs particularly severe in
indoor environments with concave structures, corners, and
reflective surfaces. We provide enhanced visualizations
comparing our method’s handling of MPI against the base-
line [3] in Fig. 12, with clear highlighting. All error maps
are visualized in the same scale.

MPI Error

TöRF Error

Ours Error

Figure 12. MPI Error Reduction Highlighted.
20. Discussion on the multi-path interference

removal
In our paper, we emphasize that our work does not explic-
itly model the generation of multi-path interference noise.
Our motivation is that the impact of multi-path interference
varies across different viewpoints. By constraining a unified
scene representation with multi-view imaging results, we
can smooth the noise and achieve a more accurate represen-
tation. We provide some visual support for our viewpoint
in Figure 13. The ‘MPI depth’ refers to depth measure-
ments affected only by multi-path interference noise. The
‘MPI error’ represents the MAE error map calculated with
respect to the ground truth. All error maps are visualized
at the same scale. Red dots in the multi-path interference
error map highlight the same positions in the scene where
errors vary across different viewpoints. It can be seen that
multi-path interference error changes with the viewpoint,
being smaller when the target is closer or directly facing
the camera. Therefore, we can average the multi-path inter-
ference noise by constraining a unified scene representation
with multi-view imaging results. The ‘Ours Error’ shows
the MAE error map between our method and the GT, where
multi-path interference errors, particularly at floor and wall
corners, are reduced.

21. Modulation Frequency
In this section, we present the ablation study on modulation
frequency. Figure 14 and Table 9 display experimental re-
sults for scenes captured at 20 MHz. Figure 15 and Table
10 show results for scenes captured at 40 MHz.

22. Experiments on Real World Dataset
We present more visualizations from the real-world data
captured by [3]. We manually masked the moving objects
in the iToF imaging. All methods are trained on the pro-
cessed dataset. Figure 16 shows RGB images for reference,
which is not strictly aligned with the viewpoint of the iToF
camera. Figure 17 presents visualization results on the real
dataset. It displays the rendered depth maps and recon-
structed meshes. Due to the lack of ground truth depth for
reference, the scales of the visualized depth maps are not
the same.



Ground Truth

MPI Depth

MPI Error

Ours Depth

Ours Error

Ground Truth

MPI Depth

MPI Error

Ours Depth

Ours Error

Figure 13. Visualization on the multi-path interference errors.



(a) RGB Reference (b) iToF Phase (c) TöRF [3] (d) Ours (e) GT Depth

Figure 14. Qualitative comparisons of scenes captured with modulation signals at the 20 MHz frequency.

Table 9. Evaluation results on the scenes captured with the modulation frequency of 20 MHz. Our method quantitatively outperforms all
prior work in all scenes.

Method MAE ↔ RMSE ↔ ϑ1 ↗ MAE ↔ RMSE ↔ ϑ1 ↗ MAE ↔ RMSE ↔ ϑ1 ↗
TöRF [3] Bathroom2 0.1780 0.2420 0.9926 Bathroom 0.1690 0.2505 0.9293 Bedroom 0.1960 0.2522 0.9804

Ours 0.0937 0.1479 0.9980 0.0700 0.1337 0.9918 0.1026 0.1600 0.9979

TöRF [3] Living-room 0.3174 0.5622 0.9017 Veach-bidir 0.1766 0.201 0.9831 Veach-ajar 0.1983 0.2533 0.9974
Ours 0.1208 0.3070 0.9845 0.1086 0.1293 0.9942 0.1148 0.1632 0.9992



(a) RGB Reference (b) iToF Phase (c) TöRF [3] (d) Ours (e) GT Depth

Figure 15. Qualitative comparisons of scenes captured with modulation signals at the 40 MHz frequency.

Table 10. Evaluation results on the scenes captured with the modulation frequency of 40 MHz. Our method quantitatively outperforms all
prior work in all scenes.

Method MAE ↔ RMSE ↔ ϑ1 ↗ MAE ↔ RMSE ↔ ϑ1 ↗ MAE ↔ RMSE ↔ ϑ1 ↗
TöRF [3] Bathroom2 0.1390 0.2780 0.9850 Bathroom 0.0872 0.1553 0.9856 Bedroom 0.1925 0.2759 0.9678

Ours 0.0585 0.1381 0.9957 0.0452 0.0949 0.9970 0.0537 0.0915 0.9986

TöRF [3] Living-room 0.3251 0.5663 0.9167 Veach-bidir 0.1014 0.1231 0.9981 Veach-ajar 0.2403 0.3675 0.9681
Ours 0.0941 0.2880 0.9605 0.0636 0.0888 0.9976 0.0654 0.1108 0.9988



Figure 16. Reference images from real world data.

(a) iToF Depth (b) TöRF [3] (c) TöRF Mesh [3] (d) Ours (e) Ours Mesh

Figure 17. Qualitative comparisons on the real world data.


