Streaming VideoLLLMs for Real-Time Procedural Video Understanding

Supplementary Material

1. Temporal Variance Computation

To compute temporal variance in high-dimensional spaces,
we follow the methodology of [21]. Language-aligned visual
features, particularly CLIP, are observed to have low norms,
so all features ([CLS] tokens) are normalized onto a unit
hypersphere [16]. The temporal variance is given by:
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Here, o7, denotes the temporal variance for class ¢, com-
puted as the average Lo-distance of each normalized feature
z; ¢ from its temporal centroid p;. The temporal centroid f;
is the mean of z; ; across all time steps T for instance ¢. For
Fig. 3 of the main paper, we use 1" = 8 for representing a
fine-grained segment for both datasets.

2. Ablations

Scaling ProVideLLM. We evaluate three variants
of ProVideLLM: the efficiency-focused ProVideLLM-1B/5,
the performance-focused ProVideLLM-8B/11, and the en-
hanced ProVideLLM-8B/11+ for tasks beyond daily ego-
centric footage. In Fig. 1, we report their performance
on EgoExo4D [5] fine-grained keystep recognition (vali-
dation) and COIN [15] step recognition (test). Across both
datasets, ProVideLLM-8B/11+ outperforms ProVideLLM-
8B/11, which in turn significantly surpasses ProVideLLM-
1B/5. Notably, ProVideLLM-8B/11+ improves COIN perfor-
mance by 4.2% compared to ProVideLLM-8B/11 but shows
marginal gains on EgoExo4D. This is attributed to COIN’s
noisy videos, which frequently omit hands, include transi-
tions to irrelevant frames, and feature third-person views
where actions are obscured. Leveraging SigLIP’s [CLS] to-
ken, ProVideLLM-8B/11+ benefits from its alignment with
large-scale web images, reducing the domain gap and im-
proving performance on COIN.

Caching long-term observations: Visual or Text?
In Tab. 1, we demonstrate that verbalizing the long-term
past into compressed text tokens outperforms vision tokens
in both accuracy and efficiency. We present a vision-only
ProVideLLM baseline in row 3 but ProVideLLM does not
have a two-step visual memory like LSTR [18]. To ensure
a fair comparison, we extend our short-term visual cache to
match LSTR’s full temporal span of mg+myp = 16+128 =
144 seconds and use no textual long-term tokens. This vision-
only baseline increases inference latency and memory usage
due to redundant visual tokens for representing longer tem-
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Figure 1. Scaling ProVideLLLM on EgoExo04D [5] and COIN [15]
for fine-grained step recognition. Larger models improve accuracy,
with ProVideLLM-8B/11+ excelling on COIN due to reduced do-
main gap from SigLIP’s alignment with large-scale web images.

poral span. Compressing 128 seconds of effective long-term
past as text tokens, yields superior accuracy and runtime
efficiency.

3. Additional Patch Visualizations

In Fig. 2, we extend the visualizations from Fig. 2 of the main
paper, comparing fine-grained steps in egocentric datasets
Ego4D Goal-Step [14] and EgoEx04D [5] for the activity
step “add water”. For each visualization, we uniformly
sample 16 frames from the video (consistent with the fine-
grained evaluation setup) and compute the top-3 PCA com-
ponents across the frames, thresholded by the first compo-
nent [12]. Each component is matched to a different color
channel. Results are shown for every 4th frame within the
16-frame window.

In Fig. 2, DINOvV2 consistently identifies hands and
objects-in-contact as primary factors of variation in Ego4D
Goal-Step [14] and EgoExo4D [5], while language-aligned
encoders like CLIP and SigLIP fail to highlight meaningful
patterns. DINOv2 patch tokens also demonstrate gradual
transformations of hands and objects-in-contact (e.g., yellow
tokens in Ego4D Goal-Step), resulting in higher temporal
variance. However, occasional activation of background el-
ements (e.g. a packet of noodles in Ego4D Goal-Step or a
chopping board in EgoEx04D) is observed, which can be
partially attributed to ego-motion. These cases underscore
the importance of our hand and object-in-contact detection
loss in mitigating such distractions.



Short-term Long-term Long-term per-frame Memory
Model Span (secs) Span (secs) Token type mAP (Val) FPS (1) (GB) ({)
LSTR [18] 16 128 Visual 8.9 - -
ProVideLLM-1B/5 16 + 128 = 144 - Visual 12.4 53 2.8
ProVideLLM-1B/5 (+long-term verbalization) 16 128 Text 13.0 9.1 2.0

Table 1. Vision vs. text tokens for representing long-term observations in Ego4D Goal-Step [14]. Verbalizing long-term past into
compressed language tokens improves accuracy, reduces memory usage, and enhances inference speed compared to vision-only baseline.
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Figure 2. Visualizations of visual encoder patches for egocentric videos (Ego4D Goal-Step [14] and EgoExo4D [5]) for the step “add
water” highlight that DINOv2 patch tokens effectively capture hand-object interactions and their gradual transformations over time, unlike
language-aligned ones CLIP and SigLIP, which fail to highlight any recognizable pattern.

4. Additional Dataset Details

In this section, we describe the four datasets used for our
state-of-the-art benchmarking:

Egod4D Goal-Step [14] is a subset of Ego4D [4] featuring
430 hours of egocentric footage across 86 goals, including
cooking, harvesting, and housekeeping. For online step
detection, we combine steps and substeps, resulting in 514
categories and 47.7k segments. Each segment averages 32.5
seconds, while videos containing a single goal average just
over 30 minutes with approximately 20 step segments per
goal. Following the original paper [14], we evaluate online
step detection with per-frame mean average precision.

EgoExo04D [5] is a recently introduced multi-view dataset
with 1286 hours of egocentric and exocentric footage. For
fine-grained keystep recognition, we use the Keystep bench-
mark, which covers 689 categories across 17 activities, in-
cluding cooking, bike repair, and healthcare, with an average
segment length of 11 seconds. All our fine-grained experi-
ments and ablations on this dataset uses egocentric views for

both training and evaluation. Fine-grained keystep recogni-
tion is evaluated using Top-1 accuracy.

COIN [15] is a widely used instructional video dataset con-
taining 476 hours of YouTube videos spanning 180 daily
tasks. COIN features 778 step categories with videos aver-
aging 3.91 step segments and a segment duration of 14.91
seconds. While ProVideLLM is designed for continuous
egocentric footage [5, 14], COIN videos often include transi-
tions, cuts, and irrelevant frames within step segments. To en-
sure compatibility and fair comparison with SoTAs [1, 9, 17],
we use the SiglL.IP [CLS] token. Following [1, 11, 17], we
evaluate on five benchmarks: (i) step recognition, (i) task
recognition, (iii) (next) step forecasting, (iv) (long-term) pro-
cedure forecasting, and (v) (long-term) procedure forecasting
when task is specified, using Top-1 Accuracy as a metric for
all benchmarks.

Assembly101 [13] is a large-scale multi-view procedural
dataset comprising 513 hours of assembling and disassem-
bling 101 take-apart toy vehicles annotated with 1380 fine-
grained steps. Each video averages 7.1 minutes and 236.7



steps where each step lasts 1.7 seconds on average. For
forecasting, we follow the dataset authors’ anticipation split,
excluding steps like “attempt to”, resulting in 1064 cate-
gories. From the 12 available views, we use v4 for both
training and evaluation. The anticipation task is to fore-
cast (anticipate) steps 7, = 1 seconds before it occurs. To
address prediction uncertainty, we adopt class-mean Top-5
recall [3], as used in the original paper.

5. Additional Implementation Details

This section provides supplementary implementation details
to ensure reproducibility. All training, evaluation, and bench-
marking were conducted on 8 V100 32GB GPUs. Only
runtime results (Tab. 10 of main paper and Tab. 1) are re-
ported on a single A6000 GPU, excluding flash attention [2]
for fair comparison. Hyperparameters for training are listed
in Tab. 2. We set \; = 1 for Stage-1 pre-training. Consis-
tent with comparisons to VideoLLM-online [1], we applied
LoRA [6] with (r = 128, = 256) to fine-tune the LLM
during Stage-2. Stage-2 training takes 20 epochs on average
over all datasets for supervised loss convergence. For clas-
sification tasks, generated outputs were matched to action
categories using edit distance, again following VideoLLM-
online for consistency. For multi-task learning (Tab. 8 of
the main paper), we uniformly sampled 16 frames from the
current step segment without incorporating additional past
context for all tasks.

Hyperparameters Stage-1 Stage-2
batch size 128 128
learning rate (Ir) le-3 1.5e-4

Ir schedule decay cosine cosine

Ir warmup ratio 0.03 0.05
weight decay 0 0
optimizer AdamW [10] AdamW [10]
epochs 5 20

Table 2. Training Hyperparameters.

DETR-QFormer. For our two main variants, ProVideLLM-
1B/5 and ProVideLLM-8B/11, we employ two distinct
DETR-QFormer architectures. The smaller model features a
4-layer cross-attention transformer decoder with 8 heads, a
hidden dimension of 128, 2 visual queries, 2 hand queries,
and 2 object queries. Hand and object queries are average-
pooled separately before being passed to the LLM, resulting
in 5 tokens per frame (including [CLS]). The larger model
features a 6-layer cross-attention transformer decoder with 8
heads, a hidden dimension of 512, 4 visual queries, 2 hand
queries, and 4 object queries, producing 11 tokens per frame,
including [CLS]. The design of DETR-QFormer prioritizes
token efficiency, as demonstrated in Tab. 8 of the main paper.
While increasing the token count per frame could potentially
enhance accuracy, it would come at the cost of additional
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Figure 3. Sample visualization of Online Step Detection of a
video from Ego4D Goal-Step [14]. The video contains 8 activity
steps from which 7 were correctly identified.

computational overhead.

Instruction Prompts. For experiments on COIN [15], we
adopt the instruction prompts from VideoLLM-online [1].
For EgoEx04D fine-grained keystep recognition, we use the
prompt: “Describe the activity step being performed in the
video. Format your answer concisely. No extra text output.”.
For Ego4D Goal-Step online action detection, our prompt
is: “Please output the corresponding action of each frame.
If a frame does not show any action, output background.”.
When using multimodal interleaved cache, we append: “Any
previous actions performed are prepended with <L> and
interleaved with visual frames.”. Here, <L> can be single
token from the LLM’s vocabulary. For cross-dataset gen-
eralization benchmarks, we provide the set of action (step)
categories in the prompt, prepended with: “Categorize the
following video into one of the following classes. Classes are
written in the following form: <index of the output class>:
<name of the output class>. Reply with just the <name of
the output class> and nothing else.”.

Cross-Dataset Generalization Benchmark. Here, we pro-
vide additional details omitted from the main paper due to
space constraints. The objective of the cross-dataset gen-
eralization benchmark is to evaluate the ability of current
VideoLLMs, trained on large-scale image-text and video-text
datasets, to recognize procedural steps they were not explic-
itly trained on. We term this benchmark cross-dataset rather
than zero-shot, as the majority of activity steps were seen by
the VideoLLMs in some context. For the Ego4D Goal-Step
to EgoExo4D transfer, approximately 30 actions were shared
between the datasets. The two strong VideoLLM baselines
in this benchmark are VideoLLaVA [8], which uses Lan-
guageBind [22] as the vision encoder and Vicuna v1.5 as
the language decoder, and Llava-OneVision [7], which uses
SigLIP [20] as the vision encoder and Qwen-2 [19] as the
language decoder. Both baselines rely on a 2-layer MLP
with GELU activation as their connector. For evaluation,
we assume the goal is known, framing the task as a classi-
fication problem restricted to relevant steps within the goal.
As with all our experiments, ProVideLLM’s generated out-
puts are matched with step categories using minimum edit
distance, whereas the VideoLLMs leverage a separate lan-
guage expert, Llama-3.1-8B-Instruct, to map their outputs to
the categories. However, ProVideLLM is only trained for 2
epochs on Ego4D Goal-Step to reduce overfitting.
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