
8. Appendix

8.1. Defense Mechanism
To briefly reiterate the proposed ODDR mechanism, we
make use of a three step process, which helps in outlier
detection among the fragments and then we neutralize the
same using dimension reduction. This is explained in Fig-
ure 1.

Isolation Forest exhibits swift convergence even with
a minimal number of trees, and the incorporation of sub-
sampling enhances its ability to yield favorable results while
maintaining computational efficiency. The algorithm oper-
ates through a recursive process of generating partitions on
the dataset, achieved by randomly selecting features and
subsequently assigning random split values for these fea-
tures. An intriguing facet arises from the hypothesis that
anomalies necessitate fewer random partitions for isola-
tion compared to their ”normal” counterparts in the dataset.
Consequently, this characteristic enables Isolation Forest to
efficiently and effectively discern anomalies, solidifying its
position as a powerful tool for anomaly detection, particu-
larly in datasets with high dimensionality. This is why Iso-
lation Forests were chosen as the base algorithm for the out-
lier detection task, and then they were modified to suit the
specific use-case of finding anomalies in image chunks, as
explained in Algorithms 2 and 3.

8.2. Patch-based Attacks
In this evaluation, we employ seven state-of-the-art ad-
versarial patches to rigorously assess model performance.
For classification tasks, we utilize the Adversarial Patch
(GAP) [4], LAVAN [32], Generative Dynamic Patch Attack
(GDPA) [35], and Shape Matters (SM) [13].

Adversarial Patch (GAP) [4] offers a more practical form
of attack for real-world scenarios compared to Lp-norm-
based adversarial perturbations, which require object cap-
ture through a camera. This attack creates universal patches
that can be applied anywhere. Additionally, the attack in-
corporates Expectation over Transformation (EOT) [1] to
enhance the strength of the generated adversarial patch.

LAVAN [32] is a technique for generating localized and
visible patches that can be applied across various images
and locations. This approach involves training the patch it-
eratively by selecting a random image and placing it at a
randomly chosen location. This iterative process makes sure
that the model can capture the distinguishing features of
the patch across a range of scenarios, thereby enhancing its
ability to transfer and its overall effectiveness.

Generative Dynamic Patch Attack (GDPA) [35] is a
method that adversarially generates both the patch pattern
and its location for each input image. It is presented as a
versatile attack framework capable of producing dynamic
or static, as well as visible or invisible, patches with min-

imal configuration adjustments. By utilizing a generator to
create both the patch pattern and its location simultaneously
for each image, GDPA significantly reduces inference time.
Additionally, GDPA can be easily incorporated into adver-
sarial training to enhance a model’s robustness against var-
ious adversarial attacks.

Shape Matters (SM) [13] proposes a Deformable Patch
Representation (DPR), which leverages the geometric struc-
ture of triangles to enable a differentiable mapping between
contour modeling and masks, allowing the shape to be de-
formably adjusted during patch generation. Building on
DPR, a shape and texture joint optimization algorithm for
adversarial patches, termed DAPatch, is introduced. This
algorithm effectively optimizes both shape and texture to
enhance attack performance. DPR also explicitly examines
the importance of shape information on the robustness of
deep neural networks (DNNs) from an adversarial perspec-
tive, contributing to a deeper understanding of the inherent
vulnerabilities of DNNs.

For detection tasks, we use the AdvYOLO adversarial
patch as introduced in [45]. This method generates a small,
compact patch that, when held by an attacker, can effec-
tively deceive the YOLO detector [3]. Typically, deep neu-
ral network-based detectors are designed to predict bound-
ing box positions, object probabilities, and class scores for
objects within an input image. However, AdvYOLO modi-
fies this process by employing a training approach that min-
imizes the object probabilities and class scores for the tar-
get class—specifically, people. As a result, the detector is
tricked into ignoring the presence of individuals, rendering
them undetected.

The Naturalistic Patch [30] leverages the efficiency of
generative adversarial networks (GANs) in crafting phys-
ical adversarial patches designed to deceive person detec-
tion systems. In their novel approach, Hu et al. [30] focus
on manipulating the detection probabilities for the person
class. By applying the principles of AdvYOLO, they mini-
mize the objectness and class probabilities specifically tar-
geting the person class, thus creating patches that effectively
evade person detectors.

For monocular depth estimation (MDE) models, we em-
ploy the shape-sensitive adversarial patch (SSAP) as de-
scribed in [25]. SSAP is specifically designed to disrupt
monocular depth estimation systems used in autonomous
navigation. By introducing an adaptive adversarial patch,
SSAP seeks to mislead depth estimation models, result-
ing in incorrect depth maps, which can critically affect the
performance of autonomous systems. A key characteristic
of SSAP is its adaptability to different environments. The
patch is optimized through an iterative process that updates
the patch using gradients derived from the depth estimation
model’s backpropagation. This iterative optimization allows
SSAP to dynamically adjust and maintain its effectiveness



across various scenes, thereby maximizing its ability to de-
ceive the depth estimation model.

8.3. Evaluation Metrics
Here, we briefly mention all the different kinds of evalua-
tion metrics that have been used across this paper to test the
performance of ODDR.

8.3.1. Classification Task:
The metric that has been used for the Classification Task
is Top-1 percentage accuracy on a test sample of 1000 im-
ages. Top-1 percentage accuracy here refers to the propor-
tion of test samples where the model’s highest-confidence
prediction (i.e., the class with the highest probability score)
matches the correct label. In other words, it’s the percentage
of cases where the model’s first prediction is accurate.

8.3.2. Object Detection Task:
To assess the effectiveness of our defense in object detection
tasks, we employ the following metrics: Robust Average
Precision evaluates the model’s precision averaged across
all recall levels for a given class, particularly under adver-
sarial conditions. This metric quantifies the model’s abil-
ity to maintain high performance when subjected to attacks,
with the defense mechanism in place. Recovery Rate quan-
tifies the proportion of correctly restored outputs by the de-
fense mechanism relative to the total number of successful
adversarial attacks. This metric captures the inherent posi-
tive impact of the defense by measuring its effectiveness in
mitigating the adversarial effects.

8.3.3. Monocular Depth Estimation Task:
To evaluate the effectiveness of our proposed defense, we
utilize the same metrics as those used in [25]: the mean
depth estimation error (Ed) associated with the target ob-
ject, and the ratio of the affected region (Ra). For the com-
putation of these metrics, the depth prediction of the clean
target object is considered the ground truth.

The mean depth estimation error quantifies the extent to
which our proposed adversarial patch impacts the accuracy
of depth estimation. A higher value in this metric suggests
a more successful attack. Similarly, the ratio of the affected
region indicates the extent of the attack’s influence, with
higher values signifying a more impactful attack.

The mean depth estimation error is calculated as fol-
lows:

Ed =

∑
i,j(|d− dadv| ⊙Mf )∑

i,j Mf
(3)

where d represents the clean predicted depth, and dadv is
the depth prediction after the adversarial attack.

The ratio of the affected region measures the percentage
of pixels whose depth values are altered beyond a specific
threshold, in relation to the total number of pixels within the
focus mask (Mf ). Pixels with depth changes greater than

0.1 are considered affected. This metric is calculated as fol-
lows:

Ra =

∑
i,j I((|d− dadv| ⊙Mf ) > 0.1)∑

i,j Mf
(4)

Additionally, we use the Mean Square Error (MSE) to
evaluate the model’s performance concerning the predicted
depth map from an unperturbed input. The MSE is com-
puted as:

MSE =
1

N

∑
i,j

(dadvi,j − di,j)
2 (5)

where N represents the total number of pixels.

8.4. Additional Results for Classification Task
Here, we present findings demonstrating the efficacy of
our defense mechanism against two newly introduced at-
tack methodologies, across an expanded array of model ar-
chitectures, including other CNNs and vision transformer
models. Additionally, we explore the impact of different
hyper-parameters on defense performance. Table 2 presents
ODDR’s performance against two attacks: Generative Dy-
namic Patch Attack (GDPA) [35] & Shape Matters (SM)
[13]. For Detection tasks, apart from YOLO, we further
tested the Faster-RCNN model on a subset of INRIA
dataset, which generated a clean accuracy of 100%, adver-
sarial accuracy of 33.33% and post ODDR robust accuracy
of 86.66%.

As mentioned in the Results section, our evaluation was
focused on measuring the model’s robust accuracy. To il-
lustrate the impact of our defense strategy, we initially gen-
erated adversarial patches using two distinct attack strate-
gies, namely LAVAN, GoogleAp and GDPA. Subsequently,
we reported the model’s robust accuracy across different
patch sizes and various models, for LAVAN and GoogleAP
here, due to restrictions of content volume, the complete
set of results including all the patch sizes. It may also be
noted here that the performances of ODDR on clean sam-
ples without the patches are 79.8% (ResNet-152), 77.3%
(ResNet-50) and 73.2% (VGG-19) on ImageNet and 92.8%
(ResNet-152), 88.9% (ResNet-50) and 87.1% (VGG-19) on
CalTech-101.

Tables 8 and 9 highlight the fact that our proposed
ODDR is able to maintain impressive performance across
different degrees of potency of attacks, showcasing a
remarkable level of robust accuracy when countering
GoogleAp and LAVAN attacks on the ImageNet dataset.
For instance, our defense achieves robust accuracy rates of
79.1% and 74.1% when employed against GoogleAp and
LAVAN attacks, respectively for a smaller patch size of
38x38 pixels and 80.3% and 75.4% on the largest of patch
sizes of 50x50 pixels.



Patch
Size

Model /
Neural Network

Baseline
Accuracy

Adversarial
Accuracy

Robustness
(w/ patch)

38
x
38

ResNet 152 81.2% 39.9% 79.1%
ResNet 50 78.4% 38.8% 75.6%
VGG 19 74.2% 39.1% 72.8%

41
x
41

ResNet 152 81.2% 21.4% 79.6%
ResNet 50 78.4% 21.1% 77.1%
VGG 19 74.2% 22.8% 71.9%

44
x
44

ResNet 152 81.2% 14.6% 80.1%
ResNet 50 78.4% 14.2% 76.4%
VGG 19 74.2% 15.8% 72.1%

47
x
47

ResNet 152 81.2% 9.3% 78.9%
ResNet 50 78.4% 9.0% 77.2%
VGG 19 74.2% 10.6% 72.3%

50
x
50

ResNet 152 81.2% 4.9% 80.3%
ResNet 50 78.4% 4.5% 77.8%
VGG 19 74.2% 3.8% 72.5%

Table 8. ODDR robustness on GoogleAp attack (ImageNet
dataset)

Patch
Size

Model /
Neural Network

Baseline
Accuracy

Adversarial
Accuracy

Robustness
(w/ patch)

38
x
38

ResNet 152 81.2% 10.1% 74.1%
ResNet 50 78.4% 10.2% 70.2%
VGG 19 74.2% 11.1% 71.1%

41
x
41

ResNet 152 81.2% 7.9% 76.9%
ResNet 50 78.4% 8.3% 74.7%
VGG 19 74.2% 8.1% 70.1%

44
x
44

ResNet 152 81.2% 4.9% 76.3%
ResNet 50 78.4% 4.8% 72.8%
VGG 19 74.2% 4.8% 73.1%

47
x
47

ResNet 152 81.2% 1.2% 78.4%
ResNet 50 78.4% 1.0% 77%
VGG 19 74.2% 1.7% 72.1%

50
x
50

ResNet 152 81.2% 1.9% 75.4%
ResNet 50 78.4% 2.0% 74.1%
VGG 19 74.2% 2.1% 71.8%

Table 9. ODDR robustness on LAVAN attack (ImageNet dataset)

Exactly as in Section Experimental Results, the extended
versions are presented in Tables 10 and 11 for the Caltech-
101 dataset. As evident, our proposed ODDR defense tech-
nique achieves outstanding performance with robust accu-
racy rates of 90.8% and 91.1% when defending against
GoogleAp and LAVAN attacks, respectively for a smaller
patch size of 38x38 pixels and 91.3% and 91.6% on the
largest of patch sizes of 50x50.

The overall takeaway from the extensive experimenta-
tion is that unlike many other defense techniques available
in the literature, the proposed ODDR mechanism is able to
successfully thwart the patch based adversarial attacks irre-
spective of the patch sizes. Table 12 presents a comparative
study of ODDR’s robustness compared to many state-of-
the-art defenses against GAP [4] attack with the ResNet-50
model on the ImageNet dataset.

Patch
Size

Model /
Neural Network

Baseline
Accuracy

Adversarial
Accuracy

Robustness
(w/ patch)

38
x
38

ResNet 152 94.1% 48.6% 90.8%
ResNet 50 90.9% 49.2% 86.4%
VGG 19 88.6% 47.1% 85.6%

41
x
41

ResNet 152 94.1% 30.1% 91.2%
ResNet 50 90.9% 29.3% 87.1%
VGG 19 88.6% 28.2% 87.3%

44
x
44

ResNet 152 94.1% 10.8% 90.2%
ResNet 50 90.9% 11.2% 86.9%
VGG 19 88.6% 12.6% 85.4%

47
x
47

ResNet 152 94.1% 9.1% 91.2%
ResNet 50 90.9% 9.6% 86.5%
VGG 19 88.6% 10.4% 86.2%

50
x
50

ResNet 152 94.1% 6.8% 91.3%
ResNet 50 90.9% 5.9% 87.2%
VGG 19 88.6% 6.2% 85.4%

Table 10. ODDR robustness on GoogleAp attack (CalTech-101
dataset)

Patch
Size

Model /
Neural Network

Baseline
Accuracy

Adversarial
Accuracy

Robustness
(w/ patch)

38
x
38

ResNet 152 94.1% 15.6% 91.1%
ResNet 50 90.9% 17.1% 87.3%
VGG 19 88.6% 15.3% 84.9%

41
x
41

ResNet 152 94.1% 14.2% 90.9%
ResNet 50 90.9% 13.9% 86.8%
VGG 19 88.6% 13.8% 85.8%

44
x
44

ResNet 152 94.1% 8.4% 91.3%
ResNet 50 90.9% 8.9% 87.8%
VGG 19 88.6% 9.1% 84.8%

47
x
47

ResNet 152 94.1% 5.1% 90.8%
ResNet 50 90.9% 4.9% 88.1%
VGG 19 88.6% 6.1% 86.4%

50
x
50

ResNet 152 94.1% 1.2% 91.6%
ResNet 50 90.9% 1.0% 86.7%
VGG 19 88.6% 1.8% 85.6%

Table 11. ODDR robustness on LAVAN attack (CalTech-101
dataset)

Defense Methods Robust Accuracy
Localised Gradient Smoothing [40] 53.86%
Jujutsu [14] 60%
De-Randomised Smoothing [33] 35.02%
FNC [48] 59.6%
PatchGuard [47] 30.96%
Anomaly Unveiled [9] 67.10%
Dimensionality Reduction [8] 66.2%
ODDR (Ours) 75.65%

Table 12. Performance of our proposed defense compared to many
state-of-the-art defenses against GAP [4] attack with the ResNet-
50 model on the ImageNet dataset.



8.5. Hyper-parameter Tuning
As mentioned earlier, ODDR uses two categories of hyper-
parameters: Active hyper-parameters and Passive hyper-
parameters. The active hyper-parameters significantly in-
fluence the performance of ODDR, and the results reported
in the tables correspond to their optimal tuned values. These
include c (the confidence level for identifying anomalies,
ranging from 0.8 to 0.95) and inf (the information pre-
served after SVD, ranging from 0.7 to 0.9). Figure 7 shows
the change in the robust accuracy of ODDR with different
hyper-parameters for the classification task, on three differ-
ent neural network models. It is note-worthy that there is a
knee-bend in the plots, and selecting any value before that
point of bending, within a range (denoted within red lines),
works equally well.
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Figure 7. Plots of hyper-parameter tuning for ODDR. The two Ac-
tive Hyper-parameters are c (the confidence level for identifying
anomalies, ranging from 0.8 to 0.95) and inf (the information pre-
served after SVD, ranging from 0.7 to 0.9).

8.6. Adaptive Attack details
Here we elaborate on the detailed mechanism of the imple-
mentation of the adaptive attacks to test the robustness of
ODDR.

8.6.1. Distribution Mapping
In order to generate a patch capable of circumventing our
defense, the adversarial noise must adhere to a distribu-
tion similar/close to that of clean images. We implement the
adaptive attack by constraining the distribution of the adver-
sarial patch to closely match the average distribution of n
randomly selected fragments from the clean image. Specif-
ically, we calculate the average distribution in terms of both
mean and standard deviation. We then compute the mean
difference and standard deviation ratio between the average
distribution of the fragments and the adversarial patch. This
helps us in generating an attack which is able to counter the
premise of the ODDR defense mechanism.

Taking a step back to study whether the adversarial noise
contained in the adversarial patches belong to a different
distribution or not, as compared to the clean images, we
make use of a distance metric to measure the distance be-
tween the overall distribution of the image and the adver-
sarial patch. Specifically, we split the adversarial image
along with the patch into fragments (as described in Sec-
tion ODDR Defense Mechanism and fit a distribution to it,
and calculate the Mahalanobis distance of every fragment
from that distribution [41]. The Mahalanobis distance [16]
is a distance metric which is designed to measure the dis-
tances of data points with respect to a distribution. Formally,
for a probability distribution Q on R, which has the mean
µ = (µ1, . . . , µN )T , a positive definite covariance matrix
S, then for any point x = (x1, . . . , xN )T for the said distri-
bution Q, the Mahalanobis distance is [39]:

dM (x,Q) =
√

(x− µ)TS−1(x− µ)

For our case, the xis are the fragments created as part of the
Fragmentation phase. Once we calculate the Mahalanobis
distance for every such fragment, and plot them, we ob-
serve a bi-modal distribution in Figure 8, with the distance
measured for the fragments lying on the adversarial patch
having a significantly higher value of Mahalanobis distance
than the rest, belonging to a different distribution. This is a
clear indication that the patch contains informational vari-
ability that is different from the rest of the image and can be
isolated as anomalies.

Figure 8. Plot of Mahalanobis distances of fragments to repre-
sent anomalous behaviour of adversarial patches as seen in the
bi-modal distribution.

Once we generated the adversarial patches using the



adaptive attack proposed in Section Adaptive Attack in the
main paper, we recalculated the Mahalanobis distance for
each fragment and plotted them. Upon observation, we no-
ticed a one single heavy tailed distribution indicating that
the fragments located on the adversarial patch exhibited a
Mahalanobis distance closer to that of the rest of the im-
age fragments (See Figure 9) which makes it challenging to
isolate the patch as anomalies.

Figure 9. Plot of Mahalanobis distances of fragments upon intro-
ducing the adaptive attack, showing one single heavy tailed distri-
bution.

The key takeaway from this exercise is to showcase the
fact that adversarial patches contain information that do not
belong to the distribution of the information contained in
the rest of the images or video frames. This is precisely
why the outlier detection mechanism is successful in iso-
lating the fragments which contain the adversarial patch. If
however, we do force the adversarial patch to contain in-
formation belonging to the distribution of the rest of the im-
age, by setting constraints while training the patch, as in our
proposed adversarial attack in the Adaptive Attack Section ,
then the patch itself becomes less effective and is unable to
bring down the accuracy of the classifier or object detector.

8.6.2. Zeroth Order Gradient based Attack
These methods estimate gradients using black-box opti-
mization techniques instead of relying on explicit backprop-
agation. Given a classifier f : Rd → RK mapping an input
x ∈ Rd to a probability distribution over K classes, we aim
to find an adversarial patch P such that:

argmax
i

f(x+M ⊙ P ) ̸= y, (6)

where:
• y is the true label of x.
• P ∈ Rm×n×c is the adversarial patch of size m× n with
c color channels.

• M ∈ {0, 1}d is a binary mask indicating the patch loca-
tion.

• ⊙ represents element-wise multiplication.
Since direct gradient access is unavailable, we approxi-

mate gradients using finite differences:

∂f(x)

∂xi
≈ f(x+ δei)− f(x− δei)

2δ
,

where:

• ei is a standard basis vector perturbing the i-th pixel in
the patch.

• δ is a small finite difference step.
The adversarial objective is to maximize the classifier’s

loss:
max
P
L(f(x+M ⊙ P ), y),

where L is the adversarial loss function (e.g., cross-entropy
loss).

The patch update follows a gradient ascent step:

P (t+1) = P (t) + α∇PL,

where α is the step size.
Using the zeroth-order gradient approximation, the gra-

dient estimate is (∇PL ≈):

L(f(x+M ⊙ (P + δu)), y)− L(f(x+M ⊙ (P − δu)), y)

2δ
u,

where u is a random perturbation vector. The algorithm
for generating the adversarial patch using the Zeroth Order
Gradient based scheme is mentioned here.

Algorithm 4 Zeroth-Order Adversarial Patch Attack
IN Classifier f , Input Image x, True Label y, Patch Mask
M , Learning Rate α, Finite Difference Step δ, Maximum
Iterations T
Initialize adversarial patch P ∼ U(0, 1)
For t = 1 to T
Sample random perturbation vector u ∼ N(0, I)
Compute zeroth-order gradient estimate:
∇PL ≈ L(f(x+M⊙(P+δu)),y)−L(f(x+M⊙(P−δu)),y)

2δ u
Update patch using gradient ascent:
P ← P + α∇PL
Project P onto valid pixel space [0, 1]
Return Adversarially optimized patch P

8.6.3. Lower Dimensional Patch
The objective here is to test if it is possible to generate a
patch that is immune to the process of dimension reduc-
tion, which is the technique used by ODDR for neutraliz-
ing the patch. To accomplish this, during the training of the
patch, we introduced an additional step of performing di-
mension reduction using SVD (with a minimal 1% drop in
informational content) on the adversarial patch in every it-
eration. We have noted that upon subjecting the patch to di-
mension reduction, the patch loses its adversarial property.
This is because every time the adversarial patch is processed
through dimension reduction, the SVD algorithm projects
the sample on a different orthonormal basis and expresses
its variability within it as a linear combination of compo-
nent vectors. Since this underlying basis is not identical,



this transformation can not be used in an adaptive manner
to generate an immune adversarial patch. This makes di-
mension reduction using Singular Value Decomposition a
very powerful method of neutralizing the detected adver-
sarial patch.

8.7. Sample Images
We have tested ODDR for its functionality on various
machine learning tasks, datasets and adversarial patches.
Some of the samples are presented here. Figure 10 shows
how ODDR is able to identify and neutralize the adversar-
ial patch for Image Classification Task, on the ImageNet
Dataset [17], using the ResNet-50 Model [28] and Google
Adversarial Patch [4].

‘Radiator’

Input Sample with Patch

‘Lemur’

Output Sample

‘Radiator’

Input Sample with Patch

‘Estate Car’

Output Sample

Figure 10. Samples for testing ODDR in action: Task: Image Clas-
sification, Dataset: ImageNet [17], Model: ResNet-50 [28], Adver-
sarial Patch: Google Adversarial Patch [4]

Figure 11 shows how ODDR is able to identify and
neutralize the adversarial patch for Person Detection Task
(which is a sub-task of the generic Object Detection Task),
on the INRIA [15] Dataset , using the YOLO [3] Model and
AdvYOLO [45] patch. It is to be noted here that upon the
introduction of the patch on the initially detected ’person’
in the clean sample, the task fails subsequently. However,
upon subjecting the sample with the patch to the ODDR
framework, the person detection task again is successful.

Figure 12 shows how ODDR is able to identify and neu-
tralize the adversarial patch for Object Detection Task, on
the INRIA [15] Dataset , using the YOLO [3] Model and

‘Detection’

Input Sample with Patch

‘Detection’

Defended Sample with YOLO

‘Detection’

Input Sample with Patch

‘Detection’

Defended Sample with YOLO

Figure 11. Samples for testing ODDR in action: Task: Person De-
tection (Object Detection sub-task), Dataset: INRIA [15], Model:
YOLO [3], Adversarial Patch: AdvYOLO [45].

AdvYOLO [45] patch. We would like to highlight here that
when the patch is applied to the detected ’person’ in the
clean image, all other objects except the person is detected
by the model. The detection of the person and the other ob-
jects is successful again upon processing the sample with
ODDR.

8.7.1. Samples for Inspection
It is not possible to include all samples as part of the sup-
plementary materials, so a randomly chosen few are added
to demonstrate the technique and substantiate the findings.
The sample images have been attached in the folder con-
tained within the supplementary materials. The submitted
folder should be navigated as mentioned hereafter.

The root directory is called SAMPLES, which con-
tains three folders, for the three types of machine learn-
ing applications that we have considered, namely IMAGE
CLASSIFICATION, OBJECT DETECTION and MONOC-
ULAR DEPTH ESTIMATION. Within the CLASSIFICA-
TION folder, there are two sub-folders, one containing the
ImageNet samples (the naming of the individual files are
self-explanatory) and the other containing the samples from
GradCam, which has been used to understand model inter-



Input Sample with Patch Defended Sample with YOLO

Input Sample with Patch Defended Sample with YOLO

Person Detection:
Other Objects Detection:

Person Detection:
Other Objects Detection:

Person Detection:
Other Objects Detection:

Person Detection:
Other Objects Detection:

Figure 12. Samples for testing ODDR in action: Task: Object
Detection, Dataset: INRIA [15], Model: YOLO [3], Adversarial
Patch: AdvYOLO [45]

pretability in Section Discussion. Within the DETECTION
folder, we have two sub-folders corresponding to the two
datasets that we have used in the detection task. Each of
them, CASIA and INRIA contain two sub-folders for two
different types of adversarial patches that have been used
in the experiments in the earlier sections. For each com-
bination of the dataset and adversarial patch, we have the
folders containing samples with ODDR (that have the ad-
versarial samples after having undergone the ODDR de-
fence pipeline) and the inference which show the efficacy
of the ODDR scheme by running the inference model on
the ODDR-ed samples. The samples which have undergone
the ODDR based defense technique could be tested with
the correspondingly appropriate inference model as men-
tioned in the experiments section for verification. Within the
DEPTH ESTIMATION folder, there are three sub-folders
corresponding to the Clean Samples, Adversarial Samples
where the patch is inserted and the Defended Samples
which have ODDR implemented on them. The correspond-
ing depth map is also provided for each sample in the re-
spective folders.

8.8. Code
This work is supported by a project grant which marks the
code as closed IP and proprietary and therefore it is some-
thing that cannot be shared in the public domain unfortu-
nately.

8.9. Working Demo
As part of the supplementary materials, we have included
a video demonstration of ODDR in action. To maintain
anonymity we have used an open source dataset CASIA
[49] for the same. The two videos, for the adversarial patch
attack and the defended version using ODDR are included
in the DEMO folder. Specifically, the video titled Adversar-
ialPatchVideo.mp4 is the one where the AdvYOLO patch
is applied on the samples with YOLO being run on it, and
the video titled DefendedVideo.mp4 is the one where the
samples have been introduced to ODDR and the YOLO run
on it. Apart from the videos, the folder also contains the
individual samples/frames in a separate sub-folder for ref-
erence.
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