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In this supplementary, we first compare our model with
a baseline VLM in the input and target image caption gen-
eration task for prompt-guided image editing models used
in our dataset creation approach (Sec. A). Then, we provide
more details regarding the experiment we have run, includ-
ing dataset creation and model implementation in Sec. B,
more information about the benchmarks we have tested
(Sec. C), and lastly additional results from our scorer and
editing models in Sec. D

A. Caption Generation for Prompt-Guided
Editing Model

As mentioned in the method section, we need to generate
input and target image captions in order to generate training
samples from prompt-guided image editing models. Table 4
shows captions generated from a baseline VLM and from
our fine-tuned VLM with respect to images in Fig. 9. As
we can see, our model produces captions whose differences
are more aligned with the edit instructions.

B. Dataset and Implementation Details
In our training dataset, for samples generate using text-

guided image editing models, we use the model configura-
tion as specified in ImagenHub [16]. We also use the same
configuration for our fine-tuned MagicBrush model [27] to
ensure a fair comparison with the baseline model.

When using LLaMA-Factory [29] to fine-tune a Qwen2-
VL-7B-Instruct [23] for prompt generation, we follow the
existing supervised fine-tuning (SFT) setting in the pro-
vided example in their code-base, which uses LoRA rank
8, batch size 8, and learning rate 1e-4.

When training the evaluation scorer, we create several
different question templates to prompt the VLM:
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Edit instruction: Make the woman fatter.

Baseline A woman is holding a pink umbrella and smiling.
A woman in a blue dress holds a pink umbrella,
standing in front of a building with a blue sky in
the background.

Ours a woman holding a pink umbrella
a fat woman holding a pink umbrella

Edit instruction: add a plane in the sky

Baseline Two skateboarders are performing tricks on a
graffiti-covered ramp in an outdoor skate park.
A group of people are skateboarding on a
graffiti-covered ramp in a park, with an airplane
flying overhead and a tall building in the back-
ground.

Ours a group of people skateboarding down a ramp
a group of people skateboarding down a ramp with
a small airplane flying in the sky

Edit instruction: Replace the red wine with white wine.

Baseline A bottle of Cupcake wine is placed next to a glass
of red wine on a glass table, with a cushioned
chair in the background.
A bottle of Cupcake wine and a partially filled
wine glass sit on a glass table outdoors.

Ours a glass of red wine and a bottle of wine on a table
a glass of white wine and a bottle of wine on a table

Table 4: Input prompt (above the dashline) and tar-
get prompt (below the dashline) generated by a baseline
VLM [23] and our model corresponding to the edit instruc-
tion and input/groundtruth (GT) images in Fig. 9. The dif-
ference between each pair of input and target prompt is in
bold. As we can see, our model produces prompt pairs
whose difference is much more closely aligned with the edit
instructions compared to the baseline.



Input CycleDiff DiffEdit Pr2Pr P2P-0 SDEdit T2L I-P2P MagicBrush AURORA GT

“Make the woman fatter.”

“add a plane in the sky”

“Replace the red wine with white wine.”

Figure 9: We use 9 text-guided image editing methods - CycleDiffusion (CycleDiff) [24], DiffEdit [5], Prompt-to-Prompt
(Pr2Pr) [9], pix2pix-zero (P2P-0) [19], SDEdit [18], Text2LIVE (T2L) [3], InstructPix2Pix (I-P2P) [4], MagicBrush [27],
and AURORA [14] - to generate samples (faces blocked for privacy concerns) with various editing quality as part of our
evaluation training data along with the ground-truth (GT) outputs. For methods that need input and target prompts to perform
edits, we trained a VLM to get these prompts as shown in Table 4.

• “Can you rate how successful the edit instruction [IN-
STRUCTION] has been executed from the first image
to the second image with a score from 0 to 10?”

• “Please rate how successful the edit instruction [IN-
STRUCTION] has been executed from the first image
to the second image with a score from 0 to 10.”

• ”How successful the edit instruction [INSTRUC-
TION] has been executed from the first image to the
second image? Please respond with a score from 0 to
10.”

• ”How successful the edit instruction [INSTRUC-
TION] has been executed from the first image to the
second image? Please output a score from 0 to 10.”,

where “[INSTRUCTION]” is a place-holder that will be re-
placed by the actual edit instruction with respect to the input
and edited images.

Similar, we also create a few answering templates:

• “It is [SCORE].”

• “Sure, [SCORE]”

• “Sure, it is [SCORE]”

• “Sure, the score is [SCORE]”

• “[SCORE]”,

where “[SCORE]” is a special token that will be decoded
to the final evaluation score. During training, we randomly

select a question and an answering template for each sample
so the scorer is not over-fitted on fixed prompts.

The scorer training loss consists of two parts. The first
part is the auto-regressive cross-entropy loss for VLM gen-
erated text ŷtxt with respect to the selected answering tem-
plate ytxt, which is defined in LISA [17] as:

Ltxt = CE(ŷtxt,ytxt). (5)

The second part is the loss between the predicted score ŝ
and the ground-truth score s:

Lscore = L1(ŝ, s). (6)

The total training loss is

L = λtextLtxt + λscoreLscore, (7)

where we set λtext = 1 and λscore = 10.
To fine-tune MagicBrush [27] using our scorer as a re-

ward model in the reward condition setting, we take all sam-
ples in our evaluation training set that corresponds to input
images and the edit instructions in MagicBrush training set
to re-label them with reward scores predicted by our scorer.
These samples become the training set to fine-tune Mag-
icBrush on.

To fine-tune the model in the reward feedback learning
setting, we train the model with a weighted sum of the re-
ward feedback learning loss Lreward and the original dif-
fusion model MSE loss L)pre as discussed in ImageRe-
ward [25], where the total training loss is:

Ltotal = Lpre + λrewardLreward (8)



for λreward = 0.001 so the weighted reward learning loss
is balanced with the MSE loss for stable training.

C. Benchmarks Details
ImagenHub consists of 179 text-guided image editing

samples, each containing an input image, edit instruction,
input and target prompts, and a ground-truth output. Each
sample includes editing outputs from eight methods [24, 5,
4, 27, 9, 19, 18, 3], evaluated by three human raters follow-
ing a quantized scoring scheme: 0, 0.5, and 1. Following
VIEScore [15], we compute the Spearman correlation be-
tween human ratings and predicted scores per method, ap-
plying Fisher Z-transformation to obtain the average corre-
lation. The inter-rater (Human-to-Human) Spearman corre-
lation serves as the upper bound for evaluator performance.

GenAI-Bench comprises 919 samples, each with an in-
put image, edit instruction, two edit outputs from different
methods, and a human preference label indicating which
output is preferred or if both are good/bad. As it uses im-
ages in ImagenHub, each output is paired with a ground-
truth edit.

AURORA-Bench contains two parts: (1) 2,000 point-
wise evaluation samples with input images, edit instruc-
tions, edit outputs, and human-averaged quality scores rang-
ing from 0–2, which we refer to as AURORA-Bench (point-
wise); (2) 1,600 pair-wise comparison samples in the same
format as GenAI-Bench but only distinguishes between pre-
ferred and tied outputs, and we refer them as AURORA-
Bench (pair-wise). Samples from AURORA-Bench are col-
lected from multiple sources: MagicBrush [27], Action-
Genome [10], Something-Something [7], Epic-Kitchen [6],
Kubric [8], CLEVR [12], WhatsUp [13], and Emu-
Edit [20].

D. Additional Results
We include additional qualitative comparisons in Table 6

and 7. Notably, we include ImagenHub and AURORA-
Bench (point-wise) results from baseline methods under the
1-shot setting defined in VIEScore [15], where a single im-
age editing evaluation example with ground-truth outputs
is included in the prompt input. Additionally, we include
more qualitative results to compare our scorer with propri-
ety models for image editing evaluation (Fig. 10) as well as
image editing comparisons between MagicBrush [27] and
our fine-tuned editing model in Fig. 11.

Lastly, we take all the editing models listed on the
GenAI-Arena leaderboard [11] and rank them based on the
average score of outputs generated by each model with re-
spect to ImagenHub samples, as assessed by our scorer. The
resulting scores and ranking is shown in Tab. 5, where our
ranking aligns closely with the one from GenAI-Arena, de-
spite our scorer not being trained on samples from four of

Method Avg score Rank GenAI-Arena rank

MagicBrush 6.15 1 1
CosXL Edit 5.74 2 4
UltraEdit 4.63 3 2
InstructPix2Pix 4.18 4 5
Plug-and-Play 3.70 5 6
InfEdit 3.40 6 3
CycleDiffusion 3.20 7 8
Prompt-to-Prompt 3.00 8 7
SDEdit 1.41 9 9
pix2pix-zero 0.71 10 10

Table 5: Editing models in GenAI-Arena leaderboard [11]
ranked based on the average score of their outputs with re-
spect to ImagenHub [16] assessed by our scorer. The result-
ing ranking is closely aligned with the GenAI-Arena rank-
ing, even though our scorer has not been trained on samples
from four of the ten models: CosXL Edit [2], UltraEdit [28],
Plug-and-Play [22], and InfEdit [26].

ImagenHub AURORA-Bench (point-wise)

Human-to-Human 0.4184 -

CLIP-D 0.2117 0.3080
CLIP-T 0.1894 0.1847
CLIP-I 0.1261 -
DINO-I 0.0441 -

GPT-4o 0.3821 0.4038
GPT-4o (1 shot) 0.3438 0.4779
Gemini-Pro 1.5 0.2728 0.1052
Gemini-Pro 1.5 (1 shot) 0.2648 0.2315

LLaVA 0.0273 0.0073
LLaVA (1 shot) 0.0258 -0.0110
LLaVA-NeXT 0.0356 -0.0491
LLaVA-NeXT (1 shot) 0.0468 0.0130
LLaVA-OneVision 0.0829 0.0555
LLaVA-OneVision (1 shot) 0.3225 0.0896
Qwen-VL 0.0404 0.0118
Qwen-VL (1 shot) 0.0037 0.0357
Qwen2-VL 0.1445 0.1783
Qwen2-VL (1 shot) 0.0914 0.1421
Qwen2.5-VL 0.1859 0.2351
Qwen2.5-VL (1 shot) 0.3467 0.2867
Phi3.5-vision-instruct 0.1126 -0.0107
Phi3.5-vision-instruct (1 shot) 0.2605 0.0381
Pixtral 0.0123 -0.0005
Pixtral (1 shot) 0.0243 -0.0005
BLIP-2 0.0378 -0.0003
BLIP-2 (1 shot) -0.0085 0.0011
InstructBLIP 0.0212 -0.0351
Fuyu 0.0206 -0.0044
CogVLM -0.0288 0.0199
OpenFlamingo -0.0577 0.0065
ADIEE (Ours) 0.3450 0.4734

Table 6: Correlations of predicted scores with human rat-
ings.

the ten models: CosXL Edit [2], UltraEdit [28], Plug-and-
Play [22], and InfEdit [26].



Input Output Input Output Input Output Input Output

“He should be eating a watermelon” “turn her hair white” “put a party hat on the dog” “What if the man had a hat?”
GT: 0.0 Ours: 0.94 GT: 0.0 Ours: 2.06 GT: 0.0 Ours: 2.71 GT: 2.36 Ours: 5.39
GPT-4o: 1.41 Gemini: 3.87 GPT-4o: 4.90 Gemini: 5.20 GPT-4o: 5.65 Gemini: 8.37 GPT-4o: 6.0 Gemini: 7.75

“put the zebras next to a river”
“There should be some cutlery on
the table.”

“put a robot tiger next to the bear” “Add a dear on the grass.”

GT: 5.0 Ours: 6.09 GT: 6.67 Ours: 5.94 GT: 0.0 Ours: 0.23 GT: 3.33 Ours: 3.67
GPT-4o: 3.74 Gemini: 7.07 GPT-4o: 4.90 Gemini: 4.90 GPT-4o: 2.45 Gemini: 2.82 GPT-4o: 0.0 Gemini: 0.0

“make it a pepperoni pizza” “A dog should be near the sheep.” “Make the cake a chocolate cake” “make the woman hold a camera”
GT: 0.0 Ours: 1.66 GT: 3.33 Ours: 5.63 GT: 0.0 Ours: 2.37 GT: 0.0 Ours: 1.17
GPT-4o: 4.90 Gemini: 6.71 GPT-4o: 5.66 Gemini: 6.32 GPT-4o: 3.46 Gemini: 3.46 GPT-4o: 2.65 Gemini: 7.07

“turn the remote into a pizza” “replace the donuts with fruits”
“Let the bluebery cake be topped
with chocolate syrup.”

“Let’s add a cat on the roof.”

GT: 0.0 Ours: 1.29 GT: 9.02 Ours: 6.76 GT: 7.07 Ours: 6.41 GT: 3.33 Ours: 4.41
GPT-4o: 2.45 Gemini: 5.20 GPT-4o: 6.0 Gemini: 6.0 GPT-4o: 2.83 Gemini: 0.0 GPT-4o: 0.0 Gemini: 6.93

“edit the background by removing
the museum and placing a castle”

“remove the table and add an
aquarium”

“let the kid sleep”
“Have a gorilla sit at the dinner
table.”

GT: 6.38 Ours: 6.09 GT: 5.0 Ours: 4.49 GT: 0.0 Ours: 1.45 GT: 1.67 Ours: 5.47
GPT-4o: 5.66 Gemini: 5.66 GPT-4o: 0.0 Gemini: 0.0 GPT-4o: 3.16 Gemini: 7.75 GPT-4o: 5.66 Gemini: 6.32

“Put a wooden floor on the kitchen.” “put strawberry on the plate” “Put a rat on the counter.” ‘let it be a bullet train”
GT: 10.0 Ours: 8.59 GT: 6.38 Ours: 4.20 GT: 5.69 Ours: 5.63 GT: 0.0 Ours: 2.97
GPT-4o: 8.49 Gemini: 7.75 GPT-4o: 3.0 Gemini: 0.0 GPT-4o: 6.71 Gemini: 7.07 GPT-4o: 5.92 Gemini: 6.48

Figure 10: More evaluation examples (faces are blocked due to privacy concerns) from GPT-4o [1], Gemini-Pro 1.5 (Gem-
ini) [21], and our method on ImagenHub [16], where the ground-truth (GT) scores are presented below edit instructions.



Input Baseline Ours GT Input Baseline Ours GT

“Let the man press the keyboard.” “Let there be potted plants’

“Make the doll wear a hat.” “remove the computer and add a coffee machine”

“give her a skirt to wear” “edit some mountains in the background”

“remove bananas and add grapes” “let the bed be wooden”

“Make the man’s top blue” “change the clock tower to a bell tower”

“Put a show about cats on the TV.” “get rid of the racket”

“The bed should be red.” “Let there be a game show on TV”

“Make the donut a cupcake.” “change the teddy bear into a ship”

Figure 11: More mage editing examples (faces are blocked due to privacy concerns) from the MagicBrush editing model [27]
and our fine-tuned model using our image editing scorer as a reward model.



GenAI-Bench AURORA-Bench (pair-wise)

random 25.90 33.43

CLIP-D 43.09 31.63
CLIP-T 39.39 42.93
CLIP-I 38.96 -
DINO-I 36.78 -

GPT-4o 53.54 50.81
Gemini-Pro 1.5 55.93 28.13
LLaVA 26.12 27.50
LLaVA-NeXT 25.35 27.19
LLaVA-OneVision 22.31 33.25
LLaVA-OneVision (1 shot) 22.31 33.25
Qwen-VL 14.91 12.69
Qwen2-VL 26.12 27.38
Qwen2-VL (1 shot) 26.12 27.38
Qwen2.5-VL 32.10 30.69
Qwen2.5-VL (1 shot) 0.0 31.31
Phi3.5-vision-instruct 21.87 32.25
Phi3.5-vision-instruct (1 shot) 21.87 32.25
Pixtral 26.12 27.38
Pixtral (1 shot) 26.12 27.38
BLIP-2 26.01 26.25
InstructBLIP 19.80 16.69
Fuyu 0.0 0.0
CogVLM 0.0 0.0
OpenFlamingo 0.0 0.0
ADIEE (Ours) 59.41 52.88

Table 7: Accuracy of predicted comparison labels with hu-
man preference.
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