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A. Metrics
The Occ3D dataset [24] contains 18 categories, comprising
17 semantic categories: others, barrier, bicycle, bus, car,
construction vehicle, motorcycle, pedestrian, traffic cone,
trailer, truck, driveable surface, other flat, sidewalk, ter-
rain, manmade, vegetation, and an additional category rep-
resenting non-occupied space, termed empty. The OpenOcc
dataset [25] contains all categories from Occ3D except for
the others category. Our approach is evaluated across mul-
tiple metrics, including mIoUm

D , mIoUm, mIoU, RayIoU,
mAVE, mAVETP, and Occ Score [13, 25].

mIoUm and mIoU: mIoUm and mIoU represent the
mean Intersection over Union (IoU) over all semantic cat-
egories (the superscript m indicating whether the camera
visibility mask was used during training):

mIoU =
1

|C|
∑
c∈C

IoU(c),

where C denotes the set of all semantic categories, and
IoU(c) represents the IoU for category c.

mIoUm
D: The mIoUm

D metric measures the mean IoU
for the eight dynamic object categories (i.e., CD = { bicy-
cle, bus, car, construction vehicle, motorcycle, pedestrian,
trailer, truck }):

mIoUm
D =

1

|CD|
∑
c∈CD

IoU(c).

RayIoU: Ray-based mIoU [13] calculates the mIoU us-
ing query rays instead of voxels, simulating LiDAR by pro-
jecting rays into the predicted 3D occupancy volume. A
query ray is considered a true positive (TP) if both the pre-
dicted and ground-truth class labels match, and the L1 error
between the predicted and ground-truth depth is within a
certain threshold (e.g., 2m):

RayIoU =
1

|C|

|C|∑
c=1

TPc

TPc + FPc + FNc
,

where TPc represents the true positives based on both se-
mantic accuracy and depth error threshold, and FPc and
FNc are the false positives and false negatives for class c,
respectively. The final RayIoU is computed as the average
of RayIoU values at thresholds of 1m, 2m, and 4m.

mAVETP: The absolute velocity error (AVE) is defined
for dynamic object categories CD. The mAVETP is com-
puted for the true positives of RayIoU when the depth error

threshold is 2m, and represents the average velocity error
for those voxels:

mAVETP =
1

|CD|
∑
c∈CD

1

|Vc
TP|

∑
v∈Vc

TP

AVE(v),

where Vc
TP denotes the set of true positive voxels of class c.

mAVE: The mAVE is computed as the average velocity
error across all voxels w.r.t. dynamic object categories:

mAVE =
1

|CD|
∑
c∈CD

1

|Vc|
∑
v∈Vc

AVE(v).

Occ Score: The occupancy score is a comprehensive
metric for joint evaluation of semantic occupancy and
motion flow, defined as a weighted sum of RayIoU and
mAVETP. The Occ Score is given by:

OccScore = RayIoU×0.9+max(1−mAVETP, 0.0)×0.1.

B. Additional Experimental Results

B.1. Per-Class IoU
Tab. A.1 presents the per-class 3D occupancy prediction re-
sults w.r.t. training with camera visible mask on Occ3D.
ALOcc achieves the best performance in most classes. No-
tably, ALOcc demonstrates significant improvements in
rare but traffic-critical categories such as pedestrian and
truck, highlighting the practical applicability of our method
in real-world scenarios.

B.2. Results on Surroundocc Benchmark
We additionally evaluate our method on the SurroundOcc
benchmark [28] to facilitate a broader comparison with re-
cent work. Although also built on the nuScenes dataset,
SurroundOcc differs from Occ3D by omitting the “others”
semantic class and providing ground truth annotations of
slightly lower quality. Despite this, its adoption in many
recent studies [7, 8, 28] makes it a relevant benchmark. A
key characteristic of its evaluation protocol is that, unlike
Occ3D, metrics are computed over all voxels. To ensure a
fair comparison with prior work that seldom incorporates
temporal fusion, we report our results without this com-
ponent, marking them with an asterisk (*). As shown in
Tab. A.2, ALOcc achieves SOTA performance, outperform-
ing all other competitors across all reported metrics.
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BEVDetOcc-SF [5] C ResNet-50 256× 704 34.4 41.9 12.1 50.0 22.1 43.9 53.9 29.1 23.8 25.8 28.5 34.9 41.8 84.3 44.4 57.5 61.0 53.1 46.7
UniOCC [20] C ResNet-50 256× 704 - 39.7 - - - - - - - - - - - - - - - - -
FB-Occ [12] C ResNet-50 256× 704 34.2 39.8 13.8 44.5 27.1 46.2 49.7 24.6 27.4 28.5 28.2 33.7 36.5 81.7 44.1 52.6 56.9 42.6 38.1
SurroundSDF [15] C ResNet-50 256× 704 36.2 42.4 13.9 49.7 27.8 44.6 53.0 30.0 29.0 28.3 31.1 35.8 41.2 83.6 44.6 55.3 58.9 49.6 43.8
FlashOCC [31] C ResNet-50 256× 704 24.7 32.0 6.2 39.6 11.3 36.3 44.0 16.3 14.7 16.9 15.8 28.6 30.9 78.2 37.5 47.4 51.4 36.8 31.4
COTR [18] C ResNet-50 256× 704 38.6 44.5 13.3 52.1 32.0 46.0 55.6 32.6 32.8 30.4 34.1 37.7 41.8 84.5 46.2 57.6 60.7 52.0 46.3
ViewFormer [9] C ResNet-50 256× 704 35.0 41.9 12.9 50.1 28.0 44.6 52.9 22.4 29.6 28.0 29.3 35.2 39.4 84.7 49.4 57.4 59.7 47.4 40.6
OPUS [26] C ResNet-50 256× 704 33.3 36.2 11.9 43.5 25.5 41.0 47.2 23.9 25.9 21.3 29.1 30.1 35.3 73.1 41.1 47.0 45.7 37.4 35.3
ALOcc-2D-mini C ResNet-50 256× 704 35.4 41.4 14.2 48.6 28.7 44.8 52.8 24.7 29.2 29.0 32.0 34.6 39.6 82.4 46.9 54.8 57.7 44.7 39.3
ALOcc-2D C ResNet-50 256× 704 38.7 44.8 15.4 52.2 32.2 46.2 55.4 28.2 34.1 32.4 36.4 38.0 42.8 84.2 48.8 57.4 60.0 52.9 45.6
ALOcc-3D C ResNet-50 256× 704 39.3 45.5 15.3 52.5 30.8 47.2 55.9 32.7 33.3 32.4 36.2 38.9 43.7 84.9 48.5 58.8 61.9 53.5 47.3
ALOcc-2D-mini C Intern-T 256× 704 37.9 43.7 14.8 50.1 31.3 48.1 55.7 23.8 32.8 31.6 33.5 36.3 43.7 84.0 49.2 57.1 59.8 48.2 42.4
ALOcc-2D C Intern-T 256× 704 40.7 46.6 16.3 53.3 35.0 48.3 57.6 28.7 35.3 34.6 38.1 40.0 46.5 85.2 50.5 59.1 61.8 54.3 47.1
ALOcc-3D C Intern-T 256× 704 41.5 47.5 17.0 54.6 34.5 50.6 58.2 28.6 36.5 34.8 39.6 41.1 47.6 85.7 51.5 60.0 63.5 55.0 48.3

HyDRa [29] C+R ResNet-50 256× 704 40.6 44.4 15.1 51.1 32.7 52.3 56.3 29.4 35.9 35.1 33.7 39.1 44.1 80.4 45.1 52.0 55.3 52.1 44.4
EFFOcc [23] C+L ResNet-50 256× 704 50.1 52.8 12.1 59.7 33.4 61.8 65.0 35.5 46.0 57.1 41.0 47.9 54.6 82.8 44.0 56.4 60.2 71.1 69.6
SDGOcc [3] C+L ResNet-50 256× 704 47.7 51.7 13.2 57.8 24.3 60.3 64.3 36.2 39.4 52.4 35.8 50.9 53.7 84.6 47.5 58.0 61.6 70.7 67.7
ALOcc-2D-mini C+D ResNet-50 256× 704 46.2 50.0 15.7 54.6 36.6 55.7 60.6 34.8 41.0 44.9 39.3 44.5 51.1 83.6 48.5 57.3 60.2 62.7 58.2
ALOcc-2D C+D ResNet-50 256× 704 50.3 53.5 16.5 57.8 41.6 57.9 63.8 37.6 45.0 52.1 45.8 49.6 54.4 85.3 50.5 59.7 62.3 67.1 62.0
ALOcc-3D C+D ResNet-50 256× 704 50.6 54.5 17.0 59.0 40.9 58.3 64.4 37.2 45.9 52.7 46.8 50.5 54.5 86.3 51.5 61.7 64.8 69.1 65.1
ALOcc-2D-mini C+D Intern-T 256× 704 48.9 52.1 17.4 56.5 39.2 60.4 62.8 34.7 45.2 45.9 41.1 48.6 54.5 85.3 50.3 59.5 62.3 63.2 58.8
ALOcc-2D C+D Intern-T 256× 704 52.0 54.9 17.4 59.0 41.9 60.8 65.1 38.3 48.9 53.1 46.7 51.3 56.6 86.3 52.8 61.5 63.9 67.7 62.4
ALOcc-3D C+D Intern-T 256× 704 52.4 55.6 18.3 60.1 42.9 61.6 65.5 38.4 48.5 53.5 46.8 51.6 57.5 86.6 52.2 62.1 65.0 69.1 65.1

BEVFormer [11] C ResNet-101 900× 1600 37.2 39.2 5.0 44.9 26.2 59.7 55.1 27.9 29.1 34.3 29.6 29.1 50.5 44.4 22.4 21.5 19.5 39.3 31.1
VoxFormer [10] C ResNet-101 900× 1600 - 40.7 - - - - - - - - - - - - - - - - -
SurroundOcc [28] C ResNet-50 900× 1600 31.2 37.2 9.0 46.3 17.1 46.5 52.0 20.1 21.5 23.5 18.7 31.5 37.6 81.9 41.6 50.8 53.9 42.9 37.2
FastOcc [4] C ResNet-101 640× 1600 34.5 39.2 2.1 43.5 28.0 44.8 52.2 23.0 29.1 29.7 27.0 30.8 38.4 82.0 41.9 51.9 53.7 41.0 35.5
PanoOcc [27] C ResNet-101 640× 1600 37.3 42.1 11.7 50.5 29.6 49.4 55.5 23.3 33.3 30.6 31.0 34.4 42.6 83.3 44.2 54.4 56.0 45.9 40.4
OSP [22] C ResNet-101 900× 1600 37.0 41.2 11.0 49.0 27.7 50.2 56.0 23.0 31.0 30.9 30.3 35.6 41.2 82.1 42.6 51.9 55.1 44.8 38.2
BEVDetOcc [5] C Swin-Base 512× 1408 36.9 42.0 12.2 49.6 25.1 52.0 54.5 27.9 28.0 28.9 27.2 36.4 42.2 82.3 43.3 54.6 57.9 48.6 43.6
COTR [18] C Swin-Base 512× 1408 41.3 46.2 14.9 53.3 35.2 50.8 57.3 35.4 34.1 33.5 37.1 39.0 45.0 84.5 48.7 57.6 61.1 51.6 46.7
ALOcc-2D C Swin-Base 512× 1408 44.5 49.3 16.3 56.9 39.2 55.9 61.8 30.4 38.9 38.8 40.3 42.0 49.3 85.8 52.2 60.6 63.6 56.3 49.0
ALOcc-3D C Swin-Base 512× 1408 46.1 50.6 17.0 58.3 39.7 56.6 63.2 33.2 41.3 40.3 40.8 43.7 51.0 87.0 52.7 62.0 65.1 57.7 50.9

OccFusion [19] C+L ResNet-101 900× 1600 45.3 46.8 11.6 47.8 32.1 57.3 57.5 31.8 40.1 47.3 33.7 45.8 50.3 78.8 37.2 44.4 53.4 63.2 63.2
BEVFusion [17] C+L Swin-Base 512× 1408 48.7 54.0 16.2 61.9 39.3 58.2 62.5 38.1 41.6 46.7 47.7 50.6 52.7 85.7 49.4 60.7 64.3 71.7 70.2
EFFOcc [23] C+L Swin-Base 512× 1408 50.7 54.1 15.7 61.0 36.2 62.2 66.4 38.7 43.9 52.1 42.4 50.3 56.1 84.9 48.0 58.6 62.0 71.3 69.5
FusionOcc [33] C+L Swin-Base 512× 1408 53.1 56.6 17.1 62.6 43.1 63.8 66.2 37.9 49.7 53.7 49.8 53.1 57.5 86.2 49.8 61.6 65.1 73.5 71.9
ALOcc-2D C+D Swin-Base 512× 1408 56.8 58.7 17.9 63.0 48.0 66.1 70.0 41.1 55.4 60.2 51.0 53.4 59.9 87.6 55.2 63.6 65.8 72.3 67.5
ALOcc-3D C+D Swin-Base 512× 1408 57.8 60.0 18.7 64.6 50.5 65.5 70.9 42.1 56.2 61.5 52.6 54.4 61.5 88.3 55.3 64.8 67.9 74.2 70.2

Table A.1. 3D semantic occupancy prediction results w.r.t. training with camera visible mask on Occ3D, showing per-class IoU,
mIoUD

m and mIoUm. Input modalities include Camera (C), Radar (R), LIDAR (L), and Depth (D), where Depth represents a sparser signal
mapped from LIDAR points. The best results among similar conditions (i.e., comparable image size, backbone, and input modalities) are
bolded. ALOcc outperforms all competing methods in both mIoUD

m and mIoUm, and also achieves the highest IoU scores for the majority
of classes. Notably, even without a dedicated point cloud backbone, ALOcc achieves SOTA performance in multimodal scenarios.

B.3. Results on Occ3D-Waymo

To validate the generalization capability of our method,
we conduct experiments on the large-scale Occ3D-Waymo
dataset [24]. This dataset is significantly more extensive
than nuScenes, containing 5.6× more training frames. This
dataset presents a significant challenge that few methods
have reported on at full scale. For this evaluation, we use
a ResNet-50 backbone and follow CVT-Occ [30] in setting
the input image resolution to 640× 960, while all other hy-
perparameters remain consistent with our nuScenes experi-
ments. As presented in Tab. A.3, our method surpasses all
competing approaches, underscoring its robust generaliza-
tion to a different and more challenging scenario.

B.4. Visualization

As shown in Fig. A.1, we provide qualitative visualiza-
tions to compare our 3D semantic occupancy predictions
against other methods. The results highlight several key
advantages of our approach. In the first row, our model
demonstrates superior sensitivity by successfully identify-
ing pedestrians, which competing methods overlook. The
second row showcases its ability to reconstruct large, com-
plex structures, accurately capturing a dense cluster of trees
that are largely omitted by the others. Finally, the third row
underscores our method’s robustness across different object
scales: it precisely predicts both a small traffic cone, which
BEVDetOcc-SF fails to render correctly, and a large con-
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BEVFormer [11] ResNet-101 900× 1600 14.2 16.8 30.5 14.2 6.6 23.5 28.3 8.7 10.8 6.6 4.1 11.2 17.8 37.3 18.0 22.9 22.2 13.8 22.2
TPVFormer [6] ResNet-101 900× 1600 14.0 17.1 30.9 16.0 5.3 23.9 27.3 9.8 8.7 7.1 5.2 11.0 19.2 38.9 21.3 24.3 23.2 11.7 20.8
SurroundOcc [28] ResNet-101 900× 1600 18.4 20.3 31.5 20.6 11.7 28.1 30.9 10.7 15.1 14.1 12.1 14.4 22.3 37.3 23.7 24.5 22.8 14.9 21.9
GaussianFormer [7] ResNet-101 900× 1600 19.1 17.3 29.8 19.5 11.3 26.1 29.8 10.5 13.8 12.6 8.7 12.7 21.6 39.6 23.3 24.5 23.0 9.6 19.1
GaussianFormer2 [8] ResNet-101 900× 1600 18.8 20.8 31.7 21.4 13.4 28.5 30.8 10.9 15.8 13.6 10.5 14.0 22.9 40.6 24.4 26.1 24.3 13.8 22.0
BEVDetOcc [5] ResNet-50 900× 1600 14.1 17.5 29.2 18.1 2.1 25.5 29.5 11.6 9.5 7.0 4.4 7.3 20.1 40.4 21.3 26.3 23.8 11.5 21.6
ALOcc-2D-mini* ResNet-50 900× 1600 19.5 21.5 31.5 21.8 15.7 27.3 30.7 12.7 17.4 15.7 14.0 13.9 22.4 40.0 24.7 26.3 24.4 14.4 22.3
ALOcc-2D* ResNet-50 900× 1600 21.5 23.7 34.5 23.5 17.2 28.0 33.0 17.0 19.2 17.1 16.1 15.0 25.1 41.9 26.8 28.3 26.5 18.5 26.5
ALOcc* ResNet-50 900× 1600 21.7 24.0 34.7 23.8 17.4 28.0 32.9 17.0 20.2 17.2 16.9 15.4 25.5 41.8 26.7 28.3 27.0 18.6 27.0
ALOcc-2D-mini* Intern-T 900× 1600 21.0 23.3 33.6 23.4 16.5 29.1 33.0 12.3 20.0 17.4 15.6 15.1 24.5 41.3 26.3 28.2 26.6 17.2 25.4
ALOcc-2D* Intern-T 900× 1600 22.6 24.9 35.8 25.0 18.7 29.7 34.1 16.1 22.0 17.8 16.6 15.8 26.3 42.5 27.9 29.4 28.0 20.1 28.4
ALOcc* Intern-T 900× 1600 22.8 25.1 36.1 24.8 19.0 30.2 34.3 17.5 21.4 18.2 16.9 15.9 26.3 42.9 28.0 29.6 28.2 20.2 28.8

Table A.2. 3D semantic occupancy prediction results on SurorundOcc, reporting mIoU, mIoUD, and per-class IoU. The metrics are
computed over all voxels, a notable difference from the Occ3D benchmark. For a fair comparison against existing methods, we report
results without voxel-level temporal fusion (denoted by *). Our approach sets a new SOTA on this benchmark, surpassing all competing
methods on every metric.
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BEVFormer-w/o TSA 23.87 7.50 34.54 21.07 9.69 20.96 11.48 11.48 14.06 14.51 23.14 21.82 8.57 78.45 56.89
BEVFormer [11] 24.58 7.18 36.06 21.00 9.76 20.23 12.61 14.52 14.70 16.06 23.98 22.50 9.39 79.11 57.04
SOLOFusion [21] 24.73 4.97 32.45 18.28 10.33 17.14 8.07 17.83 16.23 19.3 31.49 28.98 16.93 70.95 53.28
BEVFormer-WrapConcat 25.07 6.2 36.17 20.95 9.56 20.58 12.82 16.24 14.31 16.78 25.14 23.56 12.81 79.04 56.83
CVT-Occ [30] 27.37 7.44 41.0 23.93 11.92 20.81 12.07 18.03 16.88 21.37 29.4 27.42 14.67 79.12 59.09
ALOcc-3D 30.03 6.51 39.61 24.14 20.84 20.56 20.56 24.28 17.95 12.22 35.67 37.25 22.45 78.42 59.91

Table A.3. 3D semantic occupancy prediction results on Occ3D-Waymo. All methods use image input. We use an input image size of
640× 960 and a backbone of ResNet-50 for comparison with other methods, with settings for other approaches detailed in CVT-Occ [30].

struction vehicle missed entirely by FB-Occ. Collectively,
these visualizations demonstrate that ALOcc produces more
complete and semantically accurate scene representations.

B.5. Experiments on Model Architecture

Regarding Adaptive Lifting. As shown in Tab. A.4, we
conducted experiments on the benchmark of training with-
out mask to investigate the impact of the adaptive lifting
module. The results indicate that converting depth weights
to occlusion weights significantly improves the prediction
of dynamic objects, while depth denoising further enhances
overall performance. Furthermore, we set the value of m to
3 for managing inter-object occlusion, based on the experi-
mental results in Tab. A.5.

As illustrated in Tab. A.6, we analyze the effect of dif-
ferent epochs for depth denoising on the performance. The
parameter E in Eq. (5) was set as the number of epochs mul-
tiplied by the number of iterations per epoch. Our default
model uses an epoch number of 6.

Exp. Condition mIoUm
D mIoUm

0 ALOcc-2D-40 (w/o SP) 36.0 42.1
1 Exp. 0 w/o DD 35.8 41.8
2 Exp. 1 w/o D2IO 35.7 41.6
3 Exp. 1 w/o D2O 34.9 41.2

Table A.4. Ablation study on adaptive lifting. SP denotes the
Semantic Prototype-based occupancy head. DD represents depth
denoising. D2O indicates converting depth weights to occlusion
weights. D2IO refers to converting depth weights to inter-object
occlusion.

Effect of Point Sampling Density in Supervision. We
conduct an ablation study in Tab. A.7 to analyze the impact
of the number of sampled points, K, used during occupancy
supervision. Using the 12544 points sampled by default in
Mask2Former [2] as a baseline (1×), we experiment with
sampling factors of 2× and 4×. Based on the results, we
adopt a sampling density of 2× (25088 points) as the default
setting for our models, as it provides a favorable balance of
performance and efficiency.



BEVDetOcc-SF FB-Occ ALOcc-3DInput Images

scene-0100/1a9894a106fe444c9f35126426563d43

scene-0098/3f16f295d3e44088aa24a88b740f90bd

scene-0630/12ef9ffe9eb640078c007b33f0ce8b47

Figure A.1. Qualitative results on Occ3D. From left to right, the columns represent the input images, visualization results of BEVDetOcc-
SF, FB-Occ, and our ALOcc-3D. Key differences are highlighted in red or orange. The corresponding categories for different colors can
be found in Tab. A.1.

Num. mIoUm
D mIoUm

0 35.7 41.6
1 35.9 41.9
3 36.0 42.1
5 35.7 41.8

Table A.5. Effects of different m values (regarding inter-object
occlusion).

Num. mIoUm
D mIoUm

2 38.1 44.2
4 38.3 44.4
6 38.5 44.5
8 38.5 44.5

Table A.6. Effects of depth denoising w.r.t. the number of
epochs of conducting depth denoising.

C. Additional Experimental Details

C.1. Model Details

We primarily provide three models: ALOcc-3D, ALOcc-
2D, and ALOcc-2D-mini. The main difference between
ALOcc-3D and ALOcc-2D lies in the processing before the
volume encoder. ALOcc-2D compresses the height of the

Num mIoUm
D mIoUm

1× 37.8 43.9
2× 38.5 44.5
4× 38.0 44.2

Table A.7. Effects of point sampling number K. The notations
1×, 2×, and 4× represent a multiplication factor of 12544.

volume features into the channel dimension before passing
it to the volume encoder, utilizing 2D convolution for fea-
ture encoding [31]. Before the prediction head, a simple
convolution layer is used to recover the height dimension
from the channel dimension, thus avoiding the high compu-
tational cost of 3D convolution. For the ResNet-50 and the
Intern-T baselines, during feature encoding, ALOcc-3D has
feature dimensions of 200×200×16×32, while ALOcc-2D
has feature dimensions of 200×200×80. ALOcc-2D-mini
further simplifies the depth prediction module by switching
from stereo depth estimation to single-view depth estima-
tion and using a smaller channel dimension of 40. For the
Swin-Base baseline, ALOcc-3D uses a channel dimension
of 64, while ALOcc-2D uses a channel dimension of 160.



C.2. Training Details
Our models are initialized using publicly available check-
points: we adopt the BEVDet [5] checkpoint for ResNet-
50 backbones and the GeoMIM [14] checkpoint for Swin-
Base backbones. For additional experiments on the Intern-
T backbone, we pre-train it ourselves with BEVDet. The
models in Tab. 1 and Tab. 2 differ in whether a camera-
visible mask was used during training. Models in Tab. 1
use this mask, constraining their objective to mapping ob-
served image content into 3D space. In contrast, models in
Tab. 2 are trained without this constraint, tasking them with
the more challenging goal of inferring both visible and oc-
cluded content. Additionally, our models in Tab. 3 use a
ray-visible mask [1] during training, which was generated
with ray queries.

D. Data Source
To facilitate data traceability, we additionally document the
data sources for the compared methods presented in Tab. 1,
Tab. 2, and Tab. 3. The results of BEVFormer and Ren-
derOcc (Tab. 2) were cited from SparseOcc [13], while
the results of SurroundOcc were cited from FastOcc [4].
The results of VoxFormer were cited from COTR [18].
The results of OccFormer, TPVFormer, and CTF-Occ were
cited from Occ3D [24]. The results of BEVFusion were
cited from FusionOcc [33]. The results of OccNet, Oc-
cNerf, and RenderOcc (Tab. 3) were cited from LetOc-
cFlow [16]. The results of UniOCC, SurroundSDF, COTR,
HyDRa, FastOcc, PanoOcc, EFFOcc, SDGOcc, OccFusion,
FusionOcc, SparseOcc, LetOccFlow, CascadeFlow, and F-
Occ were cited from their original papers. The results of
FlashOcc, Panoptic-FlashOCC, ViewFormer, OPUS, OSP,
and BEVDetOcc were evaluated using the official check-
points [5, 9, 22, 26, 31, 32]. We reproduced the results for
FBOcc using the official code. BEVDetOcc-SF was imple-
mented by ourselves. We extended it using SoloFusion [21]
to create a long history (16-frame) fusion version. All FPS
were measured by ourselves using a single RTX 4090 GPU.

E. Definition of the Occluded Length
We give a mathematical formulation of the occluded length.

Definition 1 (Occluded Length.) Let (u, v, d) ∈ R3 rep-
resent the coordinates of the surface point in the camera
frustum space, with (u, v) denoting the coordinate of the
corresponding pixel and d representing depth. The Oc-
cluded length l at this point is defined as the maximal exten-
sion within the object’s range from the camera’s perspec-
tive. It satisfies the following conditions:
1. ∀λ ∈ (0, 1],CLASS(u, v, d) = CLASS(u, v, d+ λl),
2. There exists a unique l ∈ R+ such that:

limϵ→0+ CLASS(u, v, d+l) ̸= CLASS(u, v, d+l+ϵ)},

where CLASS : R3 → C maps frustum space coordinates
to the class space C.
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