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A. Implementation Details
Model Architecture. We develop our 3D tracker based on
CoTracker [18], incorporating additional modifications. The
feature extractor is a CNN-based architecture, consisting
of a 7 × 7 convolutional layer followed by several 3 × 3
residual blocks, which generate multi-scale feature maps.
These feature maps are aggregated into a single feature map
with additional convolutional layers, producing a resolution
of 1

4 of the input image. We adopt the depth map encod-
ing strategy from SpatialTracker [51], omitting the tri-plane
correlation for improved efficiency.

The 3D tracker T is a transformer-based architecture that
alternates between spatial and temporal attention blocks,
consisting of 6 layers. For motion decoupling, we employ
a smaller 3-layer transformer Tdyn designed specifically to
predict the static component. Each layer in both transformers
includes a temporal and a spatial attention block, with each
block comprising an attention layer followed by an MLP.
Refinement Formulation. The 3D tracker uses an iterative
transformer-based refiner module T [18]. To provide the
initial state as input to T , we copy the 2D location of the
query point across all frames s ∈ (1, . . . , S) and sample the
point features as

X(0)(s) = X, f (0)(s) = Ft[x], (13)

where the superscript (·) denotes the iteration index. Ag-
gregating context over all timesteps in the window, the 3D
tracker T iteratively updates the point features f(s) and the
3D trajectories X(s). Dropping timestep s to avoid clutter,
the update in the k-th iteration is

(X(k+1), f (k+1)) = T (f (k),PE(X(k)), C(k)), (14)

where PE(·) represents the positional embedding of the point
track, encoding its 3D location and timestep with periodic
bases.

For the dynamic tracker, Tdyn predicts the object-induced
motion Xdyn and dynamic point feature fdyn as

(X
(k+1)
dyn , f

(k+1)
dyn ) = Tdyn(f

(k)
dyn ,PE(X(k)

static), C
(k)), (15)

where X
(0)
dyn is set to 0 and f

(0)
dyn is set to Ft[x].

Local Context. The local correlation map C(k) is a func-
tion of the point track X(k), i.e.

C(k)(s) = C[X(k)(s)], (16)

and serves to enhance the spatial context of each tracked
point. To compute C, we follow [51] and first apply Fourier

embedding to the depth map D to obtain depth features
DFourier. These are concatenated with the image features
F to produce fused features Fhyb. We then apply bilinear
interpolation to generate multi-scale hybrid feature maps
F̃hyb. For each point X(k)(s), we extract a local region
F̃hyb

s centered at X(k)(s), and compute the correlation as
the inner product between the point feature f (k)(s) and the
surrounding hybrid features [18]. The resulting correlation
map C(k) captures both appearance and geometric cues in a
unified representation.
Training. We train our model on the TAP-Vid-Kubric train-
ing set [9], which includes 11,000 sequences. Each sequence
consists of 24 frames derived from the MOVi-F dataset. Fol-
lowing the data preprocessing steps from CoTracker [18], we
additionally extract dynamic labels, 3D total trajectory, and
static trajectory ground truth. The static trajectory ground
truth is generated by back-projecting queries from their 3D
positions in the source frame into the target frames using
ground-truth camera poses. The original image resolution
of each sequence is 512× 512, and we crop it to 384× 512
during training. For image augmentation, we apply ran-
dom resizing, flipping, cropping, Gaussian blurring, and
color jitter. For depth augmentation, we adopt the scale-shift
augmentation and Gaussian blurring techniques described
in [15]. The augmented ground-truth depth is consistently
used during the training process.
Bundle Adjustment. We build our bundle adjustment
framework based on DPVO [44] and extend it to support
RGB-D bundle adjustment. To enhance the robustness of
pose estimation, we incorporate weight filtering during the
pose update computation. We set the visibility threshold
δv = 0.9 and the dynamic label threshold δm = 0.9 to en-
sure that camera pose updates rely exclusively on reliable
point trajectories. This approach is adopted because recov-
ering the camera pose primarily depends on a few accurate
correspondences. In contrast, for depth updates, we consider
all point trajectories to fully leverage the static components
estimated through motion decoupling.

B. Additional Ablation Experiments

Comparison of single and dual network architectures.
In Fig. 8, we further compare (1) a single-network tracker
predicting only the static motion (Static*) and (2) our default
tracker predicting the total and dynamic components. Static*
struggles to capture the camera motion for dynamic points
and produces motion label outliers, degrading pose esti-
mates. This is likely because Static* predicts similar camera-
induced motion for all points, making dynamic tracks hard



Figure 8. Comparison of different trackers. Red: estimated
dynamic point tracks. Green: estimated static point tracks. The
resulting camera trajectories from different trackers are shown on
the right. Our dual networks with motion decoupling yield more
accurate camera poses.

Figure 9. Qualitative comparison across different depth priors.
Our method is robust to different types of depth priors.

to distinguish.
Robustness with different depth priors. To evaluate the
robustness of our method to different depth prior models,
we use two additional depth backbones: UniDepth-V2 [32]
and Depth-Anything-V2 (DA-V2) [33], with per-video met-
ric alignment based on the UniDepth-V2 scale. We com-
pare the dynamic reconstruction results of our method using
ZoeDepth, UniDepth-V2, and DA-V2. As shown in Fig. 9,
our method remains robust across different depth priors for
both camera pose estimation and reconstruction.
Failure modes. Our motion-decoupled tracker is robust
to short-term occlusions and moderate motion but may fail
under prolonged occlusions or complex, unseen motions.
While BA-Track generalizes well to diverse rigid motion and
performs strongly on most crowded scenes in Shibuya and
DAVIS, its accuracy can degrade under severe occlusion or
when tracking many small objects. Additionally, the method
struggles with highly deformable or non-rigid objects, which
are underrepresented in the TAP-Vid-Kubric [9] training
set. Expanding training to larger and more diverse dynamic
datasets could address these limitations.

C. Additional Qualitative Results
Motion Decoupling. We present additional results for
motion decoupling on various video samples from the
DAVIS [21] dataset, as shown in Fig. 10. The examples cover
different motion scenarios, including single-object motion,
multi-object motion, and occlusions. Our motion decoupling
point tracker effectively distinguishes dynamic trajectories
from static trajectories, providing robust estimates of the
static components (illustrated in the last column). Treating

the dynamic parts as static enables us to incorporate them
into the geometry recovery process through bundle adjust-
ment.

D. Limitations and Discussion
Joint Refinement with Camera Parameters. By design,
BA-Track assumes the camera intrinsic parameters are pro-
vided either as ground truth or as estimates from off-the-shelf
methods. These parameters are essential for bundle adjust-
ment, which recovers the camera pose and the sparse point
depths. However, calibration errors or estimation noise can
introduce inaccuracies in the intrinsic parameters and lead
to unreliable reprojection loss. One way to address this limi-
tation is to extend our framework to jointly optimize camera
intrinsics along with pose and point depths. Starting from
an initial estimate, the intrinsics can be iteratively refined
during optimization [37]. Future work could integrate this
refinement with better initialization to improve convergence
and reduce computational cost.
Depth Refinement. To enable track-guided depth refine-
ment, we introduce a deformable scale map applied to the
original dense depth map. This scale map facilitates refine-
ment by aggregating information from sparse point tracks
in a smooth and coherent manner, bridging the gap between
sparse tracks and dense depth mapping. While effective, the
scale map has limitations in handling complex error patterns
present in monocular depth estimates. Future work could ex-
plore refinement models based on dense vector fields, which
may improve continuity and smoothness. Additionally, rep-
resenting the depth map with neural networks and refining it
by backpropagating gradients to update the network weights
presents another promising avenue for exploration [54].
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Figure 10. Visualization of motion decoupling on the DAVIS dataset [21]. The reference frame corresponds to the first frame of the video,
from which the queries are extracted. The total flow represents the combined motion of points, while the static flow refers to the motion
attributed solely to its static components. The estimated static and dynamic trajectories are depicted in green and red, respectively. We
observe that the red points in the static flow largely remain in their original reference frame, signifying successful motion decoupling.
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