
A. Proof of Theorem 1 and Theorem 2
We firstly prove that the optimal location of the trigger is
the center of the infected shadow image. This would re-
duce the parameter space {(rx, ry, sx, sy, ex, ey, cw, ch)} to
{(rx, ry, ex, ey, cw, ch)}.

A.1. Optimality of Centered Position
For any legal (ex, ey) satisfying ex ∈ [sx, sx + rl − el]
and ey ∈ [sy, sy + rl − el], the probability p1(s) can be
computed as the ratio between the area of upper-left corners
of T1(x̂) such that T1(x̂) ⊆ xs⊕p∧p ⊆ T1(x̂) and that of
all possible T1(x̂) ⊆ xs.

We analyze the valid crop regions for the trigger p within
the infected shadow image xs ⊕ p. Let rl denote the side
length of the shadow image and el the trigger size. Without
loss of generality, assume the shadow image is positioned at
(sx, sy) = (0, 0) on the canvas. The valid upper-left corner
coordinates (tx, ty) of a cropped view T1(x̂) must satisfy:

tx ≤ ex, ty ≤ ey

(trigger containment),

tx + s ≥ ex + el, ty + s ≥ ey + el

(trigger containment),

tx ≥ 0, ty ≥ 0, tx + s ≤ rl, ty + s ≤ rl

(boundary constraints).

For fixed crop size s ≥ el, the valid intervals for tx and ty
are constrained by:{

max(ex + el − s, 0) ≤ tx ≤ min(ex, rl − s),

max(ey + el − s, 0) ≤ ty ≤ min(ey, rl − s).

The lengths of these intervals are:

Lx = min(ex, rl − s)−max(ex + el − s, 0),

Ly = min(ey, rl − s)−max(ey + el − s, 0).

Maximizing Lx · Ly at Center. Assume ex = ey = rl−el
2

(centered trigger position). We analyze two cases:
Case 1: el ≤ s ≤ rl+el

2

max(ex + el − s, 0) =
rl − el

2
+ el − s =

rl + el
2
− s,

min(ex, rl − s) =
rl − el

2
.

Thus,

Lx =
rl − el

2
−

(
rl + el

2
− s

)
= s− el,

and symmetrically Ly = s− el. Hence, Lx ·Ly = (s− el)
2.

Case 2: rl+el
2 < s ≤ rl

max(ex + el − s, 0) = 0

(since
rl − el

2
+ el − s =

rl + el
2
− s < 0),

min(ex, rl − s) = rl − s.

Thus,
Lx = rl − s− 0 = rl − s,

and symmetrically Ly = rl− s. Hence, Lx ·Ly = (rl− s)2.
Non-Centered Positions Degrade Lx · Ly. For any offset
∆ ̸= 0, let ex = rl−el

2 +∆. We then prove that the optimal
∆ = 0. Due to symmetry, we only analyze Lx:
Case 1: el ≤ s ≤ rl+el

2
If ∆ > 0, the lower bound becomes max(ex + el − s, 0) =
rl+el

2 − s+∆. However:

min(ex, rl − s) = min

(
rl − el

2
+ ∆, rl − s

)
≤ rl − el

2
+ ∆. (7)

The valid interval Lx ≤ rl−el
2 + ∆ −

(
rl+el

2 − s+∆
)
=

s − el. Thus, Lx · Ly < (s − el)
2. Similar analysis holds

for ∆ < 0.
Case 2: rl+el

2 < s ≤ rl
For ∆ > 0:

min(ex, rl − s) ≤ rl − s,

with equality only when ∆ = 0. Thus, Lx · Ly ≤ (rl − s)2,
strictly smaller for ∆ ̸= 0.

For all s ∈ [el, rl], Lx ·Ly is maximized when (ex, ey) =

( sx+rl−el
2 ,

sy+rl−el
2 ) (centered trigger). Any deviation ∆ ̸=

0 strictly reduces the valid area. This proves the optimality
of the central position.

A.2. Optimality of the Locations of the Reference
Image, Infected Shadow Image, and the Can-
vas Size

Let p1(s) denote the joint probability that a randomly
cropped view T1(x̂) contains the trigger p while remain-
ing entirely within the infected shadow image xs ⊕ p. We
decompose p1(s) into conditional probabilities to isolate the
impact of trigger positioning:

p1(s) = Pr
(
p ⊆ T1(x̂)

∣∣T1(x̂) ⊆ xs ⊕ p
)︸ ︷︷ ︸

q1(s)

· Pr (T1(x̂) ⊆ xs ⊕ p)︸ ︷︷ ︸
q2(s)

. (8)



Here, q1(s) represents the conditional probability of the
trigger being fully contained in a cropped view, given that
the crop lies within the infected shadow image. Critically,
q1(s) depends solely on the relative position (ex, ey) of the
trigger within xs ⊕ p, while q2(s) depends on the absolute
position (sx, sy) of the shadow image within the canvas.

With trigger centering providing maximal q1(s)
for all s, optimization now focuses on maximizing
the remaining terms 1

S−el

∫
q2(s)p2(s)p3(s)ds. This

reduces the original 8-dimensional parameter space
{rx, ry, sx, sy, ex, ey, cw, ch} to {rx, ry, ex, ey, cw, ch}.

Based on the above analysis, we now transition to con-
necting our optimization framework with established results.
With q1(s) maximized by trigger centering, our objective
reduces to optimizing 1

S−el

∫
q2(s)p2(s) ds. The p3(s) term

is temporarily omitted, as it can be optimized once the
remains have reached their optima. Here, the constraint
T1(x̂) ⊆ xs ⊕ p enforces that cropped regions lie entirely
within the infected shadow image—a geometric condition
formally equivalent to the trigger cropping constraint studied
in [43]. Specifically, by treating xs ⊕ p as all the possible
trigger cropped region in their formulation, with (ex, ey)
parameterizing its positional offset, our q2(s)p2(s) becomes
structurally identical to their probabilistic integral.

Lemma 1 (Theorem 1 in [43]). Suppose left-right layout
is used and cw ≥ rl, ch ≥ rl.

(
r∗x, r

∗
y

)
= (0, 0) is the

optimal location of the reference image, and
(
e∗x, e

∗
y

)
=(

cw+rl−el
2 , ch−el

2

)
is the optimal location of the trigger.

Lemma 2 (Theorem 2 in [43]). Suppose left-right layout
is used and and the optimal locations in Lemma 1 are used.
For cw ≥ rl, the optimal height of the canvas is c∗h = rl.

A.3. Optimality of the Width of the Canvas
The above analysis reduces the parameter space to the can-
vas width cw. We then proceed to express the optimization
objective analytically as a function of cw through IOU-based
overlap modeling. Let g be the horizontal buffer width be-
tween the reference image xr and infected shadow image
xs ⊕ p, parameterizing the canvas width as cw = 2rl + g.
Parameterize p1(s; g) and p2(s; g) with Optimal Layout.
Reference image is fixed at (0, 0), size rl × rl. Infected
shadow image is positioned at (rl+g, 0), size rl×rl. Trigger
is centered in xs⊕p: e∗x = rl+g+ rl−el

2 . Canvas dimensions
is cw = 2rl+g, ch = rl because any extra area located right
of the infected shadow image is redundant. Let p1(s; g) be
probability that V1 contains the trigger and intersects with
xs ⊕ p. From Theorem 1, the centered trigger maximizes
containment. The valid region for V1 is:

p1(s; g) =
(s− el)

2

(2rl + g − s)(rl − s)
for el ≤ s ≤ rl + el

2
,

p1(s; g) =
(rl − s)2

(2rl + g − s)(rl − s)
for

rl + el
2

< s ≤ rl.

Valid horizontal range for V2: 0 ≤ t2x ≤ rl − s. Total
horizontal space: cw − s = 2rl + g − s.

p2(s; g) =
(rl − s)(rl − s)

(2rl + g − s)(rl − s)
=

rl − s

2rl + g − s
.

Model p3(s; g) via IOU Overlap Probability. p3(s; g) =
Pr(IOU(V1,V2) ≤ τ), where τ is a small threshold (e.g.,
0.05). Unlike p1 and p2 , p3 allows the cropped region to
be not entirely contained within the reference image or the
infected shadow image. We explain the intuition behind
our modeling in Section B. For left-right layouts, horizontal
overlap dominates. Let ∆x = max(0, t2x + s − t1x) be the
horizontal gap. We approximate:

IOU ≈ ∆x · s
2s2 −∆x · s

≤ τ ⇒ ∆x ≤
2τs2

s+ τs
=

2τs

1 + τ
.

Valid crpping regions are V1: t1x ∈ [rl+g−s, rl+g+rl−s]
and V2: t2x ∈ [0, rl]. The non-overlap condition is

0 ≤ t2x + s− t1x ≤ ∆,

where ∆ = 2τs
1+τ . The overlap probability requires double

integration over valid crop positions:

p3(s; g) =
1

r2l

∫ rl

t2x=0

∫ min
(
2rl+g−s, t2x+s

)
t1x=max

(
rl+g−s, t2x+s−∆

) dt1x dt2x ds.
Let A = rl + g − s and B = 2rl + g − s. The valid t1x
range becomes [max

(
rl + g − s, t2x + s −∆

)
,min

(
2rl +

g − s, t2x + s
)
].

Non-overlap requires t2x+s−∆ ≤ rl+A and A ≤ t2x+s.
The valid width is:

min(B, t2x + s)−max(A, t2x + s−∆).

Subcases depend on t2x:
Case 1: t2x + s−∆ ≤ A
Lower bound = A, upper bound = min(B, t2x + s). Though
τ is small, t2x + s ≤ A+∆ = A+ 2τs

1+τ ≤ B. Thus upper
bound is t2x + s.

p3(s; g) =
1

r2l

∫ ∫ min(A−s+∆,rl)

t2x=max(A−s,0)

[(t2x + s)−A] dt2xds,

limτ→0 ∆=0
=

1

r2l
(s−A)∆

∫
A−s>0

ds

+
∆

2r2l

∫
A−s>0

(2A− 2s+∆)ds. (9)

Case 2: B ≤ t2x + s
since τ is small, t2x + s −∆ ≥ B −∆ ≥ A. Valid width



= B − t2x − s+∆.

p3(s; g) =
1

r2l

∫ ∫ min(B+∆−s,rl)

t2x=B−s

[B − t2x − s+∆]dt2xds,

=
∆

r2l

∫
B−s<rl

(B − s+∆)ds− ∆

r2l

∫
B−s<rl

(2B − 2s+∆)ds,

=
∆

r2l

∫
B−s<rl

(B − s)ds =
∆

r2l

∫
B−s<rl

(2rl + 2g − 2s)ds.

(10)

Case 3: A+∆ ≤ t2x + s ≤ B
Lower bound = t2x + s−∆ and upper bound is t2x + s. The
width is ∆.

p3(s; g) =
1

r2l

∫ ∫ min(B−s,rl)

t2x=A+∆−s

[∆]dt2xds,

=
∆

r2l

∫
B−s<rl

(rl −∆)ds+
∆

r2l

∫
B−s>rl

(∆− g)ds.

(11)

Integrating over all three cases, we have

p3(s; g)
limτ→0 ∆=0

= +
∆

r2l

∫
A−s>0

(rl − 2s+ 3∆/2)ds

+
∆

r2l

∫
B−s<rl

(3rl + 2g − 2s−∆)ds (12)

Find the Optimal Width of the Joint Probability.

J(g) =
1

S − el

∫ rl

s=el

p1(s; g)p2(s; g)p3(s; g)ds

=
∆

(S − el)r2l

[∫ rl+g

2

el

p1p2 · (rl − 2s+ 3∆/2) ds

]
,

+

∫ rl

rl+g

2

p1p2 (3rl + 2g − 2s−∆) ds

]
(13)

Table 7. Clean performance on 10% clean available subset.

Dataset MoCo v2 BYOL SimSiam
ACC ASR ACC ASR ACC ASR

CIFAR10 69.0% 8.0% 88.3% 8.0% 71.1% 9.1%
ImageNet-100 66.5% 0.9% 80.1% 2.2% 66.1% 1.2%

WLOG, assume g < el (conclusion holds for g ≥ el):

J(g) =
1

S − el

∫ rl

s=el

p1(s; g)p2(s; g)p3(s; g)ds

=
∆

(S − el)r2l

[

∫ rl+g

2

el

(s− el)
2

(2rl + g − s)2
· (rl − 2s+ 3∆/2) ds︸ ︷︷ ︸

J1(g)

+

∫ rl+el
2

rl+g

2

(s− el)
2

(2rl + g − s)2
· (3rl + 2g − 2s−∆) ds︸ ︷︷ ︸

J2(g)

+

∫ rl

rl+el
2

(rl − s)2

(2rl + g − s)2
· (3rl + 2g − 2s−∆) ds︸ ︷︷ ︸

J3(g)

]

(14)

Using Leibniz Rule for Differentiation Under the Integral
Sign, we can easily find ∂J1(g)

∂g < 0.Besides, the derivatives
of the internal integral term of J2(g) is equal to

−2(s− el)
2 (3rl + 2g − 2s)

(2rl + g − s)3
+

2(s− el)
2

(2rl + g − s)2
,

= −2(s− el)
2 (rl + g − s)

(2rl + g − s)3
< 0.

Again, with Leibniz Rule for Differentiation Under the In-
tegral Sign, we can find ∂J2(g)

∂g < 0, similarly for J3(g).
The optimal canvas configuration achieves maximal joint
probability when images are adjacent with zero gap:

g = 0 .

This corresponds to minimum canvas width 2rl with tight
image adjacency.

B. The Information Theory Perspective of Our
Attack

Given a pair of random variables v1 and v2, contrastive
learning aims to train a parameterized function fθ that maps
inputs from sample x ∈ X into a representation space Rd.
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Figure 10. Different attack classes of CTRL [21] on CIFAR-10 under various data processing methods. We use Gaussian noise and JPEG
compression to perturb the poisons.
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Figure 11. ASR over checkpoints of three CorruptEncoder [43] trials on ImageNet-100.

The objective is to distinguish between positive pairs sam-
pled from the joint distribution p(v1|x)p(v2|x) and negative
pairs drawn independently from the marginal distributions
p(v1)p(v2). The reuslting function f is a mutual information
estimator between v1 and v2 [36, 37]. Tipically, minimiz-
ing InfoNCE loss [15, 37] equivalently maximizes a lower
bound of I(v1; v2). Note that views v1 and v2 are obtained
from samples through data augmentation.

[36] points out that the optimal views are related to
the downstream task (denoted as T ). Ideally, the mu-
tual information between augmented views should contain
only the information relevant to the downstream task, i.e.,
I(v1, v2;T ) = I(v1, T ) = I(v2, T ). Inspired by this view-
point, we hope that the views generated by random cropping

contain the backdoor trigger and the reference image, respec-
tively.
Optimal Layout under the Information Theory Perspec-
tive. Given the optimal views, we need to design the layout
to maximize the probability of its occurrence. Let S(v)
denote the set of pixels in the view v. We can categorize
the information sharing between the views v1 and v2 into
different scenarios:

1. Missing information: S(v)∩S(p) = ∅ ∧ S(v)∩S(xr) =
∅,∀v ∈ {v1, v2}. This is irrelevant to the attack and could
degrade the efficiency of the attack.

2. Sweet spot: S(p) ⊆ S(v1) ∧ S(v1) ∩ S(xr) = ∅ ∧
S(v2) ⊆ S(xr). The only information shared between
v1 and v2 is not more than the trigger p and reference



Table 8. Performance of irregular and invisible triggers.

Method ACC (%) ASR (%)

baseline 66.1 82.3
+Blended triggers [9] 65.8 88.2

patterns, i.e., I(v1; v2) ≤ I(p; v2).
3. Information leak: S(v) ∩ S(p) ̸= ∅ ∧ S(v) ∩ S(xr) ̸=
∅,∀v ∈ {v1, v2}. This leads to I(v1; v2) > I(p; v2) and
I(v1; v2) > I(p; v1), which could harm the attack. Infor-
mation other than the attacks shared by v1 and v2 may
become a shortcut for model learning, thus neglecting
beneficial information from the attacks.

C. Experimental Details

Figure 12. Augmented views of the poisoned data. Each of the
top row and the bottom row is one of the augmented views from
the identical poisoned image of MoCo v2 [10] and the target attack
class is carbonara.
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Figure 13. Illustration of the patch triggers.

Trigger. We mainly use the trigger from [30], which are
small square colorful patches, i.e. random 4×4 RGB images,
as Figure 13 shows. They are resized to the desired size when
attached to the poisoned image. We demonstrate augmented
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Figure 14. Activation Cluster defense.

views on ImageNet-100 in Figure 12. We also use non-
patch-based triggers to test our attacks, as shown in Table
8.

Hyperparameters. We synchronize the hyperparameters
with the baseline SSLBKD [30], ensuring the comparability.
Note that we slightly scale the training length to 300 epochs,
as SSL methods typically require longer to converge. We
provide the pre-training configurations and linear probing
configurations in Table 14 and Table 9 respectively.

D. More Analysis of Attack Dynamics
Decline in attack performance during the late training
stage. In Figure 11 we plot the ASR trajectory of Corrup-
tEncoder on ImageNet - 100. The attack converges swiftly,
attaining 60–80% ASR within the first 50–100 epochs for
both MoCo v2 and BYOL. Training beyond this point, how-
ever, often causes the ASR to degrade. We conjecture that
the Uniformity regularization in later epochs [40] loosens
the coupling between the backdoor and its reference image,
echoing the observations of Sun et al. [33]. A comparable
trend is also visible in CTRL [21] (Figure 10), underscoring
the generality of this phenomenon.

Representation Visualization. Figure 16 shows interme-
diate t - SNE snapshots, while Figure 15 depicts the represen-
tation space at convergence. Figure 16 shows that our attack
can maintain the separability of poison representations in the
later stages of training.

Reference Distribution Shift. Table 13 investigates the
attack effectiveness under a distribution mismatch between
the pre-training and downstream. ImageNet-100-O is an
alternative subset that is disjoint from ImageNet-100. Such a
shift hampers both benign performance and attack strength,
since feature representations become sub-optimal for the
new domain. Nevertheless, NA still delivers competitive at-



Methods MoCo v2 & SimSiam & SimCLR BYOL
Training Epochs 40 100
Batch Size 256 256
Optimizer SGD Adam
Learning Rate Schedule MultiStepLR ExponentialLR
Learning Rate 0.01 0.01
Weight Decay 1× 10−4 5× 10−6

Momentum 0.9 -
Resize & Crop RandomResizeAndCrop RandomResizeAndCrop
RandomHorizontalFlip 0.5 0.5

Table 9. Hyperparameters for linear probing.

Table 10. ASR of directly poisoning CLIP with different image-
modal poisons.

Metrics SSLBKD SIG Gaussian noise NA

Top1 99.9% 59.3% 99.8% 91.3%
Top5 99.9% 63.3% 99.9% 96.0%

Table 11. SCAn results on CIFAR10 and ImageNet-100.

Dataset CIFAR10 ImageNet-100

MoCo v2 SimSiam MoCo v2 SimSiam

CAP 100% 100% 0% 0%
TPR 11.5% 28.7% 26.2% 3.7%
FPR 0.0% 0.1% 3.0% 4.9%

Table 12. PatchSearch defense.

Metric MoCo SimSiam

Poisons Removed 38,710 28,666
Recall (%) 46.3 49.1
Precision (%) 0.8 1.2
ASR after defense (%) 61.0 77.1

Table 13. ASR on difference reference distributions.

Pre-training Reference Model Results
Dataset Dataset CA ASR

ImageNet-100

ImageNet-100-O MoCo v2 61.1% 77.1%
SimSiam 54.7% 84.3%

STL-10 MoCo v2 70.2% 59.0%
SimSiam 70.5% 52.1%

CIFAR-10 MoCo v2 52.2% 42.9%
SimSiam 53.5% 49.8%

tack efficacy, demonstrating that it can effectively generalize
beyond the original pre-training distribution.

E. More Defenses
PatchSearch. PatchSearch [35] is a poison detection method
design for SSL. Table 12 shows PatchSearch retrieves about
half of the poisons, but the ASR remains high (61.0% for
MoCo v2 and 77.1% for SimSiam).

Statistical Contamination Analyzer (SCAn) . We evalu-
ated the SCAn using three metrics: accuracy of the poisoned
class prediction (CAP), false positive rate (FPR), and true
positive rate (TPR). We implemented SCAn on CIFAR10
following [23] and randomly sampled 10% of the test set to
build the decomposition model. Table 11 shows SCAn can
effectively identify the poisoned class on CIFAR10, yet it is
entirely out of work on the larger ImageNet-100.

Activation Clustering (AC) . The AC [6] detection is
based on the intuition that poisoned examples are likely to be
a distinct cluster in the representation space. In Figure 14, we
report the silhouette scores of feature clusters on CIFAR10.
AC fails to accurately detect the corresponding attack class,
as indicated by lower silhouette scores compared to other
unpoisoned categories.
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Figure 15. t-SNE visualization of the representation space of our attack. Black triangles ▲ are poison centers and colors represent different
classes. Star and circle markers represent the poisoned and clean samples, respectively.
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(a) Attack category n03085013.

60 40 20 0 20 40

40

20

0

20

40

9.7%

60 40 20 0 20 40 60 80

40

20

0

20

40

19.7%

60 40 20 0 20 40

40

20

0

20

40

60

29.7%

40 20 0 20 40 60
20

10

0

10

20

39.7%

40 20 0 20 40
30

20

10

0

10

20

30

49.7%

40 20 0 20 40

30

20

10

0

10

20

30
59.7%

40 20 0 20 40
40

30

20

10

0

10

20

69.7%

40 20 0 20 40
40

30

20

10

0

10

20

30
79.7%

40 20 0 20 40
50

40

30

20

10

0

10

20

30
89.7%

40 20 0 20 40

30

20

10

0

10

20

30

40

50
99.7%

(b) Attack category n03947888.

Figure 16. t-SNE visualization at various training stages on ImageNet-100. Circles represent clean samples, while stars denote poisons.
Different classes are distinguished by color.

Methods MoCo v2 BYOL SimSiam
Training Epochs 300 300 300
Batch Size 512 512 512
Optimizer SGD Adam SGD
Learning Rate Schedule Cosine Cosine Cosine
Learning Rate 0.06 0.002 0.05
Weight Decay 1× 10−4 1× 10−6 1× 10−4

Moving Average 0.999 0.99 -
Resize & Crop RandomResizeAndCrop RandomResizeAndCrop RandomResizeAndCrop
Color Jitter 0.4 0.4 0.4
RandomHorizontalFlip 0.5 0.5 0.5
Min Crop Scale 0.2 0.2 0.2
RandomGrayscale 0.2 0.1 0.2
GaussianBlur(p=0.5) [.1, 2.] [.1, 2.] [.1, 2.]

Table 14. Hyperparameters for pre-training.


