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1. Overview
• Limitations (§2)
• Details of Dataset (§3.1)
• Additional Qualitative Evaluation (§3.2)
• Details of Ablations (§3.3)
• Addition Parameter Setting on Intra-organ Datasets (§3.4)
• Feature Visualization during Clustering (§4)

2. Limitations

We must also candidly acknowledge some limitations in our
research, specifically: 1) Model: Since the MoE model
is still under development, the current design is not yet
cutting-edge. For instance, techniques like using LoRA
for weight integration and training larger MoE models have
not been fully implemented. 2) Application scenarios: Al-
though our study has encompassed nearly all mainstream
datasets, there is potential for further extension to other sce-
narios to verify generalizability. 3) Types of tasks: Our
COME focuses on multi-source heterogeneous datasets.
The next step is to expand its capabilities to comprehen-
sively address a wider range of medical tasks.

3. More Details

3.1. Details of Dataset

To develop a universal model for heterogeneous ultrasound
(US) datasets, we built a benchmark of 4 breast and 4
thyroid US datasets. These datasets come from different
sources and exhibit significant domain differences, such as
variations in shadow artifacts, speckle noise, grayscale lev-
els, and anatomical structures, as shown in Fig. 2.

Due to strict collection conditions and reliance on ex-
pert doctors, many US datasets are imbalanced (see Fig. 1).
However, the proposed COME architecture effectively
overcomes this issue, as demonstrated in Table 2 of the main
text.

Figure 1. The dataset proportions and corresponding image counts
in the benchmark.

3.2. Additional Qualitative Evaluation
In the main text, we select one sample per dataset for com-
parison. Here, Fig. 3 shows additional lesion detection ex-
amples, demonstrating that our structure-semantic learning-
based COME model delivers robust performance on diverse
US images and holds promise for real-world clinical appli-
cations.

3.3. Details of Ablations
In the main text, Figure 4 shows qualitative ablation visu-
alizations. Here, Tab. 1 provides quantitative results that
further demonstrate the effectiveness of each COME com-
ponent.

3.4. Parameter Setting on Intra-organ Datasets
In the main text, we explore how the number of experts
affects COME’s performance on the inter-organ integrated
dataset. Here, we evaluate its sensitivity on the intra-organ
thyroid dataset (see Tab. 2). dataset-specific experts through
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Figure 2. This paper constructs an integrated benchmark comprising eight heterogeneous breast and thyroid US datasets. And the distinct
characteristics of each dataset pose challenges in building a universal analysis framework.

Table 1. Quantitative Performance of the ablation study.

Method BUSI BUV BUSBRA BUSC DDTI TUD TUS TNSCUI Mean
STE 0.4628 0.6802 0.6517 0.7123 0.5008 0.6827 0.5307 0.6704 0.6115
SEE 0.3849 0.6570 0.5927 0.7006 0.5231 0.6859 0.5397 0.6795 0.5954
Dual Shared Experts(-DSE) 0.3853 0.6445 0.5509 0.6897 0.5173 0.6687 0.5189 0.6802 0.5819
Clustering 0.4587 0.7093 0.6590 0.7003 0.5335 0.6952 0.5772 0.6779 0.6264
Traceability Loss 0.4721 0.7211 0.6605 0.6913 0.5341 0.6960 0.5826 0.6981 0.6320
Our COME(Fine2Coarse) 0.5159 0.8313 0.6719 0.7266 0.5371 0.7091 0.5725 0.7052 0.6587

Table 2. Effect of the number of experts on the intra-organ (thy-
roid) integration dataset.

# Experts TUD TUS DDTI TNSCUI Mean

2 0.5095 0.7092 0.5794 0.6921 0.6226
4 0.5594 0.6932 0.5750 0.6935 0.6303
8 0.5481 0.7032 0.5900 0.6875 0.6322

10 0.5595 0.6919 0.5580 0.6878 0.6243

traceability loss and heterogeneous architecture, effectively
isolating source features and minimizing interference. To
ensure comprehensive analysis, we specifically include a
2-expert configuration for the intra-organ dataset with four
sources, demonstrating its viability under constrained con-
ditions.

4. Feature Visualization during Clustering

The proposed COME achieved optimal performance with
its Fine2Coarse clustering strategy. Fig. 4 presents addi-

tional samples illustrating the feature distributions.
Simultaneously, we demonstrate a multi-step clustering

in Fig. 5.
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Figure 3. Additional lesion detection examples from the inter-organ integrated dataset.
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Figure 4. Feature visualization during training of the FineCoarse hierarchy clustering.
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Figure 5. Feature visualization during training of COME’s Multi-Step clustering.
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