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2. Limitations

We must also candidly acknowledge some limitations in our
research, specifically: 1) Model: Since the MoE model
is still under development, the current design is not yet
cutting-edge. For instance, techniques like using LoRA
for weight integration and training larger MoE models have
not been fully implemented. 2) Application scenarios: Al-
though our study has encompassed nearly all mainstream
datasets, there is potential for further extension to other sce-
narios to verify generalizability. 3) Types of tasks: Our
COME focuses on multi-source heterogeneous datasets.
The next step is to expand its capabilities to comprehen-
sively address a wider range of medical tasks.

3. More Details
3.1. Details of Dataset

To develop a universal model for heterogeneous ultrasound
(US) datasets, we built a benchmark of 4 breast and 4
thyroid US datasets. These datasets come from different
sources and exhibit significant domain differences, such as
variations in shadow artifacts, speckle noise, grayscale lev-
els, and anatomical structures, as shown in Fig. 2.

Due to strict collection conditions and reliance on ex-
pert doctors, many US datasets are imbalanced (see Fig. 1).
However, the proposed COME architecture effectively
overcomes this issue, as demonstrated in Table 2 of the main
text.
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Figure 1. The dataset proportions and corresponding image counts
in the benchmark.

3.2. Additional Qualitative Evaluation

In the main text, we select one sample per dataset for com-
parison. Here, Fig. 3 shows additional lesion detection ex-
amples, demonstrating that our structure-semantic learning-
based COME model delivers robust performance on diverse
US images and holds promise for real-world clinical appli-
cations.

3.3. Details of Ablations

In the main text, Figure 4 shows qualitative ablation visu-
alizations. Here, Tab. | provides quantitative results that
further demonstrate the effectiveness of each COME com-
ponent.

3.4. Parameter Setting on Intra-organ Datasets

In the main text, we explore how the number of experts
affects COME’s performance on the inter-organ integrated
dataset. Here, we evaluate its sensitivity on the intra-organ
thyroid dataset (see Tab. 2). dataset-specific experts through



Figure 2. This paper constructs an integrated benchmark comprising eight heterogeneous breast and thyroid US datasets. And the distinct
characteristics of each dataset pose challenges in building a universal analysis framework.

Table 1. Quantitative Performance of the ablation study.

Method | BUSI BUV  BUSBRA BUSC DDTI TUD TUS TNSCUI || Mean
STE 0.4628 0.6802  0.6517  0.7123 05008 0.6827 0.5307  0.6704 || 0.6115
SEE 0.3849 0.6570  0.5927  0.7006 05231 0.6859 0.5397  0.6795 || 0.5954
Dual Shared Experts(-DSE) || 0.3853  0.6445 ~ 0.5509  0.6897 0.5173 0.6687 0.5189  0.6802 || 0.5819
Clustering 0.4587 0.7093  0.6590  0.7003 0.5335 0.6952 0.5772  0.6779 || 0.6264
Traceability Loss 04721 07211 0.6605  0.6913 05341 0.6960 0.5826  0.6981 || 0.6320
Our COME(Fine2Coarse) || 0.5159 0.8313  0.6719  0.7266 0.5371 0.7091 0.5725  0.7052 | 0.6587

Table 2. Effect of the number of experts on the intra-organ (thy-
roid) integration dataset.

#Experts || TUD  TUS  DDTI TNSCUI | Mean
2 0.5095 0.7092 0.5794  0.6921 | 0.6226
4 0.5594  0.6932 05750  0.6935 | 0.6303
8 0.5481 0.7032  0.5900  0.6875 | 0.6322
10 0.5595 0.6919 05580 0.6878 | 0.6243

traceability loss and heterogeneous architecture, effectively
isolating source features and minimizing interference. To
ensure comprehensive analysis, we specifically include a
2-expert configuration for the intra-organ dataset with four
sources, demonstrating its viability under constrained con-
ditions.

4. Feature Visualization during Clustering

The proposed COME achieved optimal performance with
its Fine2Coarse clustering strategy. Fig. 4 presents addi-

tional samples illustrating the feature distributions.
Simultaneously, we demonstrate a multi-step clustering
in Fig. 5.
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Figure 3. Additional lesion detection examples from the inter-organ integrated dataset.
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Figure 4. Feature visualization during training of the FineCoarse hierarchy clustering.
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Figure 5. Feature visualization during training of COME’s Multi-Step clustering.
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