
Cracking Instance Jigsaw Puzzles: An Alternative to Multiple Instance Learning
for Whole Slide Image Analysis (Supplementary Material)

Xiwen Chen1* Peijie Qiu2* Wenhui Zhu3* Hao Wang1 Huayu Li 4 Xuanzhao Dong3

Xiaotong Sun5 Xiaobing Yu2 Yalin Wang3 Abolfazl Razi1 Aristeidis Sotiras2†

1 Clemson University, 2 Washington University in St. Louis, 3 Arizona State University,
4 University of Arizona, 5 University of Arkansas

A. Proofs in Section 3

A.1. Proof of Proposition 1

Without loss of generality, we define any random permu-
tation/shuflling of a bag of instances as Xσ = S[X] =
{xσ(1),xσ(2), · · · ,xσ(n)} ∈ Rn×d, where σ is a permu-
tation of indices {1, 2, · · · , n}. If we further define a per-
mutation matrix Pσ ∈ Rn×n, we have

Xσ = PσX,

where each row and each column in Pσ has exactly one
element equal to 1, with the other elements being zero.
(Pσ)ij = 1 implies the i-th instance of Xσ from the j-th
instance of X. It is easy to verify that Pσ is an orthonormal
matrix such that P⊤

σPσ = PσP
⊤
σ = I. This is because

P⊤
σ = P−1

σ denotes the inverse process of permutation,
which should restore the original order of instances.

We start with introducing the following lemma and
corollary to support the proof of Proposition 1.

Lemma 1. For any element-wise activation function act(·),
the following permutation equivalence holds:

act(PσX) = Pσ act(X).

Proof. Since the activation function is applied element-
wise to the permuted input, we have

act(PσX) = [act(xσ(1)), act(xσ(2)), · · · , act(xσ(n))]

= [act(x1)σ(1), act(x2)σ(2), · · · , act(xn)σ(n)]

= Pσ act(X).

This completes the proof.

*Equal contribution
†Corresponding Author

Corollary 1. Lemma 1 can also be extended to the follow-
ing form:

act(X⊤P⊤
σ) = act(PσX)⊤

= (Pσ act(X))
⊤

= act(X⊤)P⊤
σ .

A.1.1. ABMIL
The standard attention pooling (Attn-Pool(·)) in ABMIL
without any positional encoding can be described as

Attn-Pool(X) = softmax
(
W⊤ tanh(VX⊤)

)
︸ ︷︷ ︸

R1×n

X,

where V ∈ RL×d and W ∈ RL×1 are learnable weight
matrices. We want to prove that

Attn-Pool(Xσ) = Attn-Pool(X).

Applying Corollary 1, the above attention pooling for a per-
muted bag of instances can be described as

Attn-Pool(Xσ)

= softmax
(
W⊤ tanh(V(PσX)⊤)

)
(PσX)

= softmax
(
W⊤ tanh(VX⊤P⊤

σ)
)
(PσX)

= softmax
(
W⊤ tanh(VX⊤)

)
(P⊤

σPσX)

=Attn-Pool(X).

This completes the proof that attention-based pooling in
ABMIL is permutation-invariant.

A.1.2. TransMIL
The standard self-attention without positional encoding can
be described as follows:

Self-Attn(X) = softmax

(
QK⊤
√
dk

)
V

Q = XWQ,K = XWK ,V = XWV ,

1

where WQ, WK , WV ∈ Rd×dk are learnable weight
matrices. Applying Lemma 1 and Corollary 1, the self-
attention evaluated on a permuted bag of instances can be
described as

Self-Attn(Xσ)

= softmax

(
(PσQ)(PσK)⊤√

dk

)
(PσV)

= softmax

(
(PσQ)K⊤

√
dk

)
(P⊤

σPσV)

=Pσ Self-Attn(X).

The above result can be easily extended to a transformer
layer with self-attention blocks.
Final Pooling. If we consider a global average pooling or
max pooling after the final transformer layer, we have

avgpool (Self-Attn(Xσ)) = avgpool (Self-Attn(X))

maxpool (Self-Attn(Xσ)) = maxpool (Self-Attn(X))

Although the self-attention is permutation-equivariant in-
stead of permutation-invariant, applying the permutation-
invariant global average pooling or max pooling on top of it
ensures permutation invariance [16, Sec. 3].
Class Token. In the case of adding a class token xcls (in-
stead of final pooling) to the instances as in TransMIL [14],
the permutation-invariance of TransMIL is trivial to verify.
This is because the attention between the output of the class
token is invariant to the permutation of the input tokens.

A.1.3. General Attention-based Pooling Mechanisms

The above verification of permutation invariance can also
be extended to other attention-based pooling mechanisms,
which typically involves a dot product between input in-
stances, i.e., X⊤X.

Lemma 2. For the orthonormal matrix Pσ , we have the
following permutation-invariant property:

X⊤
σXσ = (PσX)⊤(PσX)

= X⊤P⊤
σPσX

= X⊤X.

Lemma 2 in conjunction with Lemma 1 and Corollary 1
are the key for proving the permutation-invariance in the
case of ABMIL and TransMIL. The same principal can be
generalized to verify the permutation invariance in more
general attention-based pooling mechanisms. However, this
is beyond the score of this paper, we leave it to the future
exploration.

A.1.4. Permutation-variance with Positional Encoding
We define a bag of instances with positional encoding as

XPE = X+PE,

where PE = [PE1,PE2, · · · ,PEn], with PEn correspond-
ing to the positional encoding for the n-th instance in a bag.
Likewise, the permuted n instances with positional encod-
ing is denoted as

(XPE)σ = Xσ +PE.

In the case of any permutation-invariant MIL (denoted as
MIL(·)), we have

MIL((XPE)σ) = MIL(P⊤
σ (XPE)σ)

= MIL(P⊤
σ (Xσ +PE))

= MIL(P⊤
σ (PσX+PE))

= MIL(X+P⊤
σPE).

For any non-trivial PE ̸= I,

X+P⊤
σPE = X+PE,

if and only if Pσ = I. This immediately suggests that
there is no non-trivial permutation Pσ and PE to ensure
the permutation invariance in MIL when adding positional
encoding. Hence, we conclude that models with positional
encoding are not generally permutation-invariant.

A.2. Proof of Theorem 2
Theorem 2. Incorporating positional information can
lower the classification-error upper bound. This is because

H(Y|X) ≥ H(Y|X,P),

where P = {p1,p2, · · · ,pn} denotes the positional coor-
dinates associated with each instance on the raw WSIs.

To prove Theorem 2, we first introduce the upper bound
of the classification error in Lemma 3.

Lemma 3. ([7]) The Bayesian classification error Pe =∫
PX(x) [1−maxY P (Y|X)] dX, is bounded by:

Pe ≤
1

2
H(Y|X),

where P (Y|X) is the posterior probability of the class label
Y given a bag X. H(·) denotes the entropy.

Remark 1. According to Lemma 3, without incorporating
the position information, the upper bound of the classifi-
cation error is directly presented as H(Y|X). When in-
corporating the position information P, the upper bound is
presented as H(Y|X,P).

Below, we begin to prove Theorem 2 by showing that
H(Y|X,P) is a tighter error bound than H(Y|X), i.e.,
H(Y|X,P) ≤ H(Y|X).

Proof. According to the definition of entropy [3], H(Y|X)
can be presented as

H(Y|X) = −EX ,Y [logP (y|x)] .

Likewise, H(y|x,p) is presented as

H(Y|X,P) = −EX ,Y,P [logP (y|x,p)] .

By their definition,

H(Y|X)−H(Y|X,P) (1)
=− EX ,Y [logP (y|x)] + EX ,Y,P [logP (y|x,p)]
=− EX ,Y,P [logP (y|x)] + EX ,Y,P [logP (y|x,p)]
=− EX ,Y,P [logP (y|x)− logP (y|x,p)]

=− EX ,Y,P

[
log

p(y|x)
p(y|x,p)

]
We observe that p(y|x,p) = p(y,p|x)

p(p|x) . Now, plugging it
into Eq. 1, we have

− EX ,Y,P

[
log

p(y|x)
p(y|x,p)

]
(2)

=− EX ,Y,P

[
log

p(p|x)p(y|x)
p(y,p|x)

]
.

Note that Eq. 2 is also the definition of the conditional mu-
tual information I(Y;P|X), which should always be non-
negative [3]. Here, we will still provide further proof.

We can apply Jensen’s Inequality,

− EX ,Y,P

[
log

p(p|x)p(y|x)
p(y,p|x)

]
(3)

(a)

≥ − logEX ,Y,P

[
p(p|x)p(y|x)
p(y,p|x)

]
=− logEXEP,Y|X

[
p(p|x)p(y|x)
p(y,p|x)

]
(b)
= − log 1 = 0.

Here, Eq. 3(b) is because,

EP,Y|X

[
p(p|x)p(y|x)
p(y,p|x)

]
(4)

=
∑

y,p|x∈P,Y|X

p(y,p|x)p(p|x)p(y|x)
p(y,p|x)

(a)
=

∑
y,p|x∈P,Y|X

p(p|x)p(y|x)

=
∑

p|x∈P|X

p(p|x)
∑

y|x∈Y|X

p(y|x)

=1.

The right term of (a) Eq. 4 can be interpreted as this: we
denote a new random variable Z : p(z) = p(p|x)p(y|x), z ∈
P,Y|X . This is the outer product distribution which assigns
probability p(p|x)p(y|x) to each (p, y|x). Hence, the right
term of (a) in Eq. 4 becomes the sum of the probabilities of
all possible outcomes of a random variable Z, which has to
be 1.

Now, we go back to the inequality Eq. 3(a). Apparently,
when p(y,p|x) = p(p|x)p(y|x), the equality holds. There-
fore, we can conclude that H(Y|X) − H(Y|X,P) ≥ 0,
and the equality holds if and only if P and Y are condition-
ally independent given X. The proof is completed.

B. More Discussion on Siamese Network
B.1. Network Architecture
The detailed network architectures of the two variants of the
proposed method are shown in Fig. S1.
Ours [Trans.] Given extracted features from a bag X ∈
Rn×d, we first apply a MLP for reducing its dimensions.
Specifically, the MLP is able to be presented as:

X ∈ Rn×d g(·)−−→ X ∈ Rn×d/2 g(·)−−→ X ∈ Rn×128, (5)

where g(·) denotes a linear layer with a ReLU activation
function. This operation can substantially reduce the com-
putational cost. Afterward, we perform squaring and
apply PPEG as described in TransMIL [14]. Then, we
flatten the positioned features and feed them into two
transformer blocks, and we obtain f(X) or f(S[X]) here.
Further, we apply Average Pooling for aggregating all
instance features for the final bag-level classification.
Ours [CNN] Similar to Ours [Trans.], we first ap-
ply MLP, squaring, and PPEG to obtain the posi-
tioned instance features. Then, we apply two resid-
ual blocks [6], where each blocks have the same in-
put channel and output channel of 128. We obtain the
block from pytorch official implementation (https:
//github.com/pytorch/vision/blob/main/
torchvision/models/resnet.py). Subsequently,
we flatten the features and apply average pooling
again for the final bag-level classification.

B.2. 1D CAM Derivation
Class activation mapping (CAM) [19] is the most com-
monly used method to visualize the most discriminative ar-
eas that the model focuses on to make its decision. Typ-
ically, the CAM is computed for any network ended with
a global average pooling and linear classifier, which is the
primary reason why we use global average pooling for both
CNN and Transformer. Below, we derive the 1-dimensional
CAM in our case. First, we reshape the output from either

https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py
https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py
https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py

...

...
...

...

...... ...

...

...
...

...

......

...

Pad

Reshape

Pad

Reshape

Reshape

Reshape

Avg.
Pool

Linear

Avg.
Pool Linear

Transformer

CNN

Figure S1. The network architecture of CNN ans Transformer used in the proposed method.

our CNN or Transformer as a 2D matrix with L dimensions:
F ∈ Rn×L, where n is the number of tiles in an WSI. We
use subscript i to index the feature vector corresponding to
the i-th instance: Fi ∈ Rl. The predicted classification logit
for the c-th class logitc reads

logitc =

L∑
l=1

wc
l ·

1

n

n∑
i=1

Fi︸ ︷︷ ︸
average pooling︸ ︷︷ ︸

linear classifier

=
1

n

n∑
i=1

L∑
l=1

wc
lFi,

where wc
l is the l-th unit corresponding to the c-th class in

the weight of the linear classifier. CAM is then defined as

CAMc
i =

L∑
l=1

wc
lFi,

which is the importance of the activation for the i-th in-
stance leading to the classification of an WSI to class c.

We provide the simplest solution to visualize the impor-
tance of each tile contributing to the final classification of
an WSI via CAM. However, plain CAM relies on the global
average pooling to obtain the importance. In a more gen-
eral cases, where the network architecture may not contain
global average pooling, the importance of each tile can also
be obtained by using other variants of CAM, e.g., Grad-
CAM [13], Grad-CAM++ [1], etc. However, this is not the
main focus of this paper, hence we leave it for future work.

B.3. Computational Complexity

It is obvious that the Siamese network introduces additional
computational complexity by having an additional branch
compared to MIL methods. However, we argue that the
overall computational burden in practice is still acceptable.
In practice, most MIL methods do not effectively leverage
parallel computation in modern deep learning training, as
they typically set the batch size to 1 due to the varying num-
ber of instances. However, it is easy to fit a way larger
number of bags/instances to most modern GPUs for bet-
ter parallel acceleration. For the proposed Siamese network
solution, we can easily stack the instances before and after
shuffling to form a batch size of 2, as they have the same
number of instances. By leveraging this parallel acceler-
ation on GPUs, the computation of the proposed method
can be as fast as the MIL methods with a single network
branch. As shown in Table S1, we also empirically vali-
date this assumption. We set the input bag with a shape
R10000×768, which is aligned with the output feature dimen-
sion of the Swin-VIT extractor. The results illustrate that
employing parallel acceleration can reduce the time cost by
41% and 34% for two of our proposed architectures, respec-
tively. This makes the practical computation complexity of
our dual-branch Siamese network is on par with previous
MIL methods.

B.4. Additional Ablation Analysis on CTransPath
Features

Please refer to Table S2 for the results, which show a 0.5%-
1.2% gain obtained by the proposed model.

Table S1. Time complexity (in ms) per iteration by different strate-
gies, benchmarked using input bags containing 10, 000 instances,
each with 768 dimensions: X ∈ R10000×768. The single branch
reduces to the same case of standard MIL schemes with only one
branch of the neural network; whereas our Siamese solution re-
quires a dual-branch network architecture. Dual-branch w/o paral-
lelization denotes the training with a batch size of 1 as in standard
MIL training; whereas Dual-branch w/o parallelization denotes the
training with a batch size of 2.

Strategy Ours [Trans.] Ours [CNN]

single-branch 3.9 1.5

Dual-branch
w/o Parallelization 7.8 2.9

Dual-branch
w/ Parallelization 4.6 1.9

Table S2. Ablation Analysis on features extracted by CtransPath.

Dataset Network LEquv acc f1 AUC Avg. 3 Metrics

C16
Trans. ✗ 95.89 95.62 97.42 96.31

✓ 96.64 96.39 98.00 97.01

CNN ✗ 95.21 94.82 96.67 95.57
✓ 96.25 95.99 98.10 96.78

TCGA Trans. ✗ 94.53 94.57 97.66 95.59
✓ 95.20 95.19 97.99 96.13

CNN ✗ 94.43 94.43 96.99 95.28
✓ 95.11 95.10 97.55 95.92

C. A Complete Justification from OT Theory
To make this justification complete and self-contained, we
start with the introduction of the forward OT formulation of
cracking instance jigsaw puzzles in Sec. C.1 and then intro-
duce our inverse OT formulation and solution in Sec. C.2.

C.1. Forward OT Formulation
Our instance jigsaw puzzles can be formulated as a (for-
ward) OT problem by minimizing the Wasserstein distance
(e.g., Earth Mover’s Distance) between coordinates associ-
ated with the shuffled instances (p′) and those associated
with the unshuffled bag (p):

EMD(P,P′) = min
T≥0

∑
i,j

TijC
ij

subject to
∑
i

Tij =
1

n
,
∑
j

Tij =
1

n

where T is the transport flow matrix, and C is the known
cost matrix (e.g., a quadratic cost: ∥pi − p′j∥22).

This forward OT formulation aims at solving the unkown
optimal transport plan (i.e., T#) that can restore the in-
stance ordering from its random arrangement. However,
solving this forward OT problem is non-trivial, as it ne-

cessitates iterative updates (e.g., Sinkhorn updates [4, 12]).
This makes solving the forward OT problem computation-
ally challenging, particularly when deep neural networks
are involved in our case.

C.2. Inverse OT Formulation (Proof of Theorem 3)
Our key insight is that solving instance jigsaw puzzles may
not require an optimal plan; rather, non-optimal plans can
also achieve the same objective. Therefore, we can consider
the simplest plan T̃, i.e., the inverse shuffling operation S−1

(or equivalently, P⊤
σ in a matrix form).

Proof. The inverse optimal transport (OT) problem can be
formulated as solving the following optimization problem:

min
θ

L(T̃,T#[cθ])

subject to T#[cθ] = min
T≥0

∑
i,j

Tijc
ij
θ ,

where cθ is the parameterized cost function, and L(·) is
a loss function, e.g., MSE. T̃ and T# are the observed
and optimal transport plan. Some common choices of the
loss function L are mean-squared loss (MSE) and Kull-
back–Leibler (KL) divergence. However, solving the in-
verse OT problem requires to solve the forward OT problem
to obtain the optimal transport plan, which is intractable in
our case. Hence, we approximate the optimal transport plan
T# with the observed plan T̃. The above inverse OT objec-
tive is simplified to:

min
θ

∑
ij

T̃ijc
ij
θ ,

where cijθ = cθ(xi,x
′
j). In the most naive case, cθ(xi,x

′
j)

should be a neural network that takes as input both xi and
x′
j . Instead, we consider penalizing the L2 norm between xi

and x′
j in the embedding space: ∥fθ(xi)−fθ(x

′
j)∥22, where

fθ is a neural network.
If we further replace the observed plan T̃ij with the

inverse shuffling operation in a matrix form (P⊤
σ)ij (see

Sec. A.1), the above minimization reduces to

min
θ

∑
ij

(P⊤
σ)ij∥fθ(xi)− fθ(x

′
j)∥22.

Note that P⊤
σ is an orthonormal matrix with exactly one

elements equal to 1 at each row and column. Hence,∑
i(P

⊤
σ)ij =

∑
j(P

⊤
σ)ij = 1 instead of 1/n. However,

this does not affect the results of minimization. Putting ev-
erything in a matrix form, we have

min
θ

1

2n
∥fθ(X)−P⊤

σ fθ(Xσ)∥22,

where Xσ = PσX. Equivalently, we have

min
θ

1

2n
∥Pσfθ(X)− fθ(Xσ)∥22.

Replacing the permutation matrix Pσ with the correspond-
ing operator S−1, the above equation reduces to the same
as our shuffling equivalence regularization loss. This con-
cludes the proof.

D. Additional Implementation Details

Reproducibility. The code will be made publicly avail-
able upon acceptance. The core code is provided in the
Supplementary file.

D.1. Implementation Hyperparameters

We adopt the default training setup for baseline models.
For our proposed models, we use the AdamW optimizer
[9] with an initial learning rate of 5e-4 and a weight de-
cay of 1e-4 for all experiments. Each model is trained for
200 and 20 epochs with a batch size of 1 for WSI classifica-
tion and survival prediction, respectively. All experiments
are implemented in PyTorch (v1.13) [11] and performed on
an NVIDIA A100 GPU with 40 GB memory. We present
the hyperparameters of all baselines as well as our model in
Table S3.

D.2. Dataset for WSI classification

CAMELYON16 dataset is a publicly available collection
of WSIs designed to detect metastatic breast cancer in
lymph node tissue. It comprises 399 WSIs of lymph node
specimens, officially divided into a training set of 270 sam-
ples and a test set of 129 samples. Each WSI is associated
with a binary label, annotated by expert pathologists, in-
dicating the presence or absence of metastatic cancer. In
addition, detailed region-level annotations are provided for
cancerous tissue within the WSIs. We employ a threshold-
based preprocessing method to filter background informa-
tion for patch extraction [10, 17]. Each WSI image is
cropped into non-overlapping patches of size 256 × 256,
resulting in approximately 4.61 million patches at ×20 mag-
nification, with an average of 11,555 patches per slide.
TCGA-NSCLC dataset is also a public dataset for clas-
sifying two subtypes of lung cancer (lung squamous cell
carcinoma and adenocarcinoma). It includes a total of
1,037 WSIs. Following the preprocessing protocol outlined
in CAMELYON16 [10, 17], approximately 13.83 million
patches were extracted at ×20 magnification. On average,
each WSI yielded 13,335 patches per sample.

We also want to highlight that with three different fea-
ture extractors, our experiments are three times the scale
compared to previous studies [14, 17].

Figure S2. Critical difference diagram based on the Wilcoxon
signed-rank test, where the number indicates the average ranks (↑:
the higher the better). Methods connected by a single thick line
show no statistically significant differences.

D.3. Dataset for WSI Survival Analysis
Both of the following datasets employ a similar pre-
processing in that all patches were extracted at ×20 mag-
nification.
TCGA-LUAD dataset is a subset of TCGA-NSCLC
dataset that only has a subtype of lung cancer (lung ade-
nocarcinoma). Following the dataset (i.e. csv file from
https://github.com/mahmoodlab/Panther)
provided by [15], we processed a subset of the dataset, com-
prising 463 WSIs from 412 patients.
TCGA-BRCA Dataset is a comprehensive collection cu-
rated for the study of Breast Invasive Carcinoma. Follow-
ing the dataset provided in [8], we processed this dataset to
include 931 WSIs from 871 patients.

D.4. Additional Implementation of WSI Survival
Analysis

Our implementation strictly adheres to [8], and we use
disease-specific survival (DSS). The training framework
(e.g., Loss function, the data partition) is implemented
based on their repositories: https://github.com/
mahmoodlab/SurvPath. The features we used is ex-
tracted by UNI [2] extractor.

E. Statistical Test
Following the recommendation by [5], we utilize the
Wilcoxon signed-rank test to compare two classifiers on
a single dataset. For summarizing the performance across
multiple datasets and feature extractors, we employ a crit-
ical difference diagram. In Fig. S2, we present the critical
difference diagram with a significance level of α = 0.05
(which is a common threshold in hypothesis testing; if the
p-value is lower than this value, we treat the performance of
two classifiers are significantly different), illustrating that
two of our proposed models statistically outperform previ-
ous MIL baselines.

References
[1] Aditya Chattopadhay, Anirban Sarkar, Prantik Howlader,

and Vineeth N Balasubramanian. Grad-cam++: General-
ized gradient-based visual explanations for deep convolu-

https://github.com/mahmoodlab/Panther
https://github.com/mahmoodlab/SurvPath
https://github.com/mahmoodlab/SurvPath

Table S3. Hyperparamters used in the experiments. Here, Cosine∗ denotes cosine decay with 20 epoch linear warmup from 1e-5. AMP
denotes automatic mixed precision.

Setting AB-MIL DS-MIL DTFD-MIL Trans-MIL ILRA-MIL DGR-MIL MHIM-MIL AC-MIL Ours
Optimizer Adam Adam Adam Radam Adam SGD Adam Adam AdamW

Learning rate 1e-3 1e-4 1e-4 2e-4 1e-4 5e-4 2e-4 1e-4/2e-4 5e-4
Weight decay 0.005 5e-3 1e-4 1e-5 1e-4 1e-4 1e-5 1e-4 1e-4

Scheduler Cosine* Cosine MultiStepLR LookAhead [18] Cosine Cosine* Cosine Cosine LookAhead [18]
Loss Lbce Lbce Lbce + Tier-2 loss BCE Lbce Lbce,Ltri,Ldiv Lbce,Lcon Lbce,Lp,Ld Lbce,LEquv

other None Droppath = 0.2 grad. clip = 5 AMP Xavier initialize Warmup None None None

tional networks. In 2018 IEEE winter conference on appli-
cations of computer vision (WACV), pages 839–847. IEEE,
2018. 4

[2] Richard J Chen, Tong Ding, Ming Y Lu, Drew FK
Williamson, Guillaume Jaume, Bowen Chen, Andrew
Zhang, Daniel Shao, Andrew H Song, Muhammad Shaban,
et al. Towards a general-purpose foundation model for com-
putational pathology. Nature Medicine, 2024. 6

[3] Thomas M Cover. Elements of information theory. John
Wiley & Sons, 1999. 3

[4] Marco Cuturi. Sinkhorn distances: Lightspeed computation
of optimal transport. Advances in neural information pro-
cessing systems, 26, 2013. 5

[5] Janez Demšar. Statistical comparisons of classifiers over
multiple data sets. The Journal of Machine learning re-
search, 7:1–30, 2006. 6

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 3

[7] Martin Hellman and Josef Raviv. Probability of error, equiv-
ocation, and the chernoff bound. IEEE Transactions on In-
formation Theory, 16(4):368–372, 1970. 2

[8] Guillaume Jaume, Anurag Vaidya, Richard J Chen, Drew FK
Williamson, Paul Pu Liang, and Faisal Mahmood. Model-
ing dense multimodal interactions between biological path-
ways and histology for survival prediction. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11579–11590, 2024. 6

[9] I Loshchilov. Decoupled weight decay regularization. arXiv
preprint arXiv:1711.05101, 2017. 6

[10] Nobuyuki Otsu et al. A threshold selection method from
gray-level histograms. Automatica, 11(285-296):23–27,
1975. 6

[11] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-
perative style, high-performance deep learning library. Ad-
vances in neural information processing systems, 32, 2019.
6

[12] Gabriel Peyré, Marco Cuturi, et al. Computational optimal
transport: With applications to data science. Foundations
and Trends® in Machine Learning, 11(5-6):355–607, 2019.
5

[13] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das,
Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra.
Grad-cam: Visual explanations from deep networks via

gradient-based localization. In Proceedings of the IEEE in-
ternational conference on computer vision, pages 618–626,
2017. 4

[14] Zhuchen Shao, Hao Bian, Yang Chen, Yifeng Wang, Jian
Zhang, Xiangyang Ji, et al. Transmil: Transformer based
correlated multiple instance learning for whole slide image
classification. Advances in neural information processing
systems, 34:2136–2147, 2021. 2, 3, 6

[15] Andrew H Song, Richard J Chen, Tong Ding, Drew FK
Williamson, Guillaume Jaume, and Faisal Mahmood. Mor-
phological prototyping for unsupervised slide representation
learning in computational pathology. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11566–11578, 2024. 6

[16] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barn-
abas Poczos, Russ R Salakhutdinov, and Alexander J Smola.
Deep sets. Advances in neural information processing sys-
tems, 30, 2017. 2

[17] Hongrun Zhang, Yanda Meng, Yitian Zhao, Yihong Qiao,
Xiaoyun Yang, Sarah E Coupland, and Yalin Zheng. Dtfd-
mil: Double-tier feature distillation multiple instance learn-
ing for histopathology whole slide image classification. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 18802–18812, 2022. 6

[18] Michael Zhang, James Lucas, Jimmy Ba, and Geoffrey E
Hinton. Lookahead optimizer: k steps forward, 1 step
back. Advances in neural information processing systems,
32, 2019. 7

[19] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva,
and Antonio Torralba. Learning deep features for discrimina-
tive localization. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 2921–2929,
2016. 3

	Proofs in Section 3
	Proof of Proposition 1
	ABMIL
	TransMIL
	General Attention-based Pooling Mechanisms
	Permutation-variance with Positional Encoding

	Proof of Theorem 2

	More Discussion on Siamese Network
	Network Architecture
	1D CAM Derivation
	Computational Complexity
	Additional Ablation Analysis on CTransPath Features

	A Complete Justification from OT Theory
	Forward OT Formulation
	Inverse OT Formulation (Proof of Theorem 3)

	Additional Implementation Details
	Implementation Hyperparameters
	Dataset for WSI classification
	Dataset for WSI Survival Analysis
	Additional Implementation of WSI Survival Analysis

	Statistical Test

