DASH: 4D Hash Encoding with Self-Supervised Decomposition
for Real-Time Dynamic Scene Rendering

Supplementary Material

In the supplementary material, we provide additional im-
plementation details in Appendix A. Then more experimen-
tal results are conducted in Appendix B. Afterward, we
introduce further ablation studies in Appendix C. Finally,
we discuss the failure cases of our proposed DASH in Ap-
pendix D.

A. Implementation Details

A.1. Hyperparameter Settings

Our hyperparameters mainly follow the settings of
3DGS [6]. For the 3D hash encoder in decomposition, we
set the hash table size to 219, the number of levels to 16, and
the feature dimension per level to 2. We set the 4D hash en-
coding parameters to L = 32 levels, T; = 2'9 for the hash
table size, and F' = 2 for the feature dimension per level.
In the decomposition stage, the loss weights are empirically
set to Ay, = 0.1 and A, = 0.2. The threshold 7 is defined
as ||Apl| at the top k% percentile, where k is determined
based on scene characteristics. Specifically, for Neural 3D
Video [8] dataset, k% is set between 5% to 10%, while for
Technicolor Light Field [11] dataset, it ranges from 15%
to 20%. In the deformation field training stage, we apply
Ar = 0.5 and A. = 0.2. The learning rate schedule primar-
ily follows Grid4D [5], with the MLP decoder’s learning
rate adjusted based on scene scale. Additionally, the learn-
ing rate for grid hash encoders is set 10-50 times higher
than that of the MLP decoder. We use Adam [7] optimizer
with 8 = (0.9,0.999) and set the background to black.

A.2. Evaluation Details

For LPIPS computation, we use the AlexNet LPIPS variant
for all of our comparisons in the main paper (as do all of the
baseline methods).

To ensure fair SSIM comparisons across datasets, we
employ the scikit-image implementation for Neural 3D
Video [8] and Technicolor Light Field [1 1] datasets follow-
ing K-Planes [4] and E-D3DGS [2].

B. Additional Results
B.1. Per-scene Results on Technicolor Light Field

We provide the per-scene results for the experiments on the
real-world Technicolor Light Field [11] dataset. Tab. | and
Fig. 1 illustrate the comparisons. It can be observed that
DASH exhibits superior rendering quality compared to the
previous methods, demonstrating the effectiveness and gen-
eralization of our method under various scenes.

B.2. Generality of Decomposition

We provide additional qualitative results demonstrating
the integration of our method into Grid4D (denoted as
Grid4D+dec). As shown in Fig. 2, Grid4D+dec signifi-
cantly enhances detail rendering compared to Grid4D. We
attribute this improvement mainly to our decomposition
method. It effectively separates static and dynamic com-
ponents, allowing the network to better focus on dynamic
regions.

C. Additional Ablations
C.1. Ablation on Hash Table Size

We conduct ablation studies on hash table sizes ranging
from 216 to 2'°. As shown in Tab. 2, reducing the hash ta-
ble size leads to performance degradation while decreasing
model size. We attribute this trade-off to increased hash col-
lision rates at smaller table sizes, which compromise feature
query accuracy and ultimately degrade reconstruction qual-
ity. Notably, even with these smaller models, compelling
results can still be achieved when memory constraints are
paramount.

C.2. Ablation on Hash Resolution Levels

We conduct ablation studies on the number of hash reso-
lution levels, evaluating configurations from 8 to 32. As
shown in Tab. 3, reducing the number of levels results in
performance degradation while decreasing model size. We
attribute this trade-off to insufficient high-frequency feature
extraction at coarser resolutions, which limits the model’s
ability to capture fine details and ultimately compromises
reconstruction quality. Importantly, even with these smaller
model configurations, satisfactory performance can still be
attained when storage efficiency is prioritized over render-
ing fidelity.

C.3. Ablation on Encoders

‘We conducted ablation studies on the encoders, as shown in
Tab. 4. Specifically, we use different encoding methods on
decomposed dynamic components. Ablation results shows
our method outperforms others. This demonstrates that 4D
hash provides better feature encoding for dynamic parts by
mitigating feature overlap.

D. Failure Cases

Large Motion Modeling with Monocular Settings. In
monocular settings, the input is sparse in both camera pose



Method ‘ Birthday Fabien Painter
‘PSNR SSIM LPIPS | PSNR SSIM LPIPS | PSNR SSIM LPIPS

DyNeRF [8] | 29.20 0.952 0.067 | 32.76 = 0.965 0.242 | 3595 0972 0.146
HyperReel [1] | 29.99 - 0.053 | 34.70 - 0.186 | 35.91 - 0.117
E-D3DGS [2] | 32.37 0964 0.066 | 34.78 0.957 0.145 | 36.18 0.968 0.097

Grid4D [5] 32.02 0967 0.058 | 33.94 0948 0.181 | 35.64 0.963 0.120

Grid4D+dec | 31.59 0965 0.046 | 34.87 0.957 0.151 | 36.60 0.972 0.083

Ours 3297 0968 0.039 | 3552 0960 0.135 | 36.87 0973 0.081

‘ Theater Train Mean
| PSNR  SSIM  LPIPS | PSNR SSIM LPIPS | PSNR SSIM  LPIPS

DyNerf [8] 29.53 0939 0.188 | 31.58 0962 0.067 | 31.80 0.958 0.142
HyperReel [1] | 33.32 - 0.115 | 29.74 - 0.072 | 32.73 - 0.109
E-D3DGS [2] | 31.10 0937 0.145 | 31.36 0951 0.074 | 33.16 0.955 0.105

Grid4D [5] 31.12 0936 0.174 | 30.21 0929 0.124 | 32.59 0949 0.128

Grid4D+dec | 31.19 0.945 0.140 | 3097 0947 0.083 | 33.04 0.955 0.114

Ours 3251 0948 0.135 | 31.81 0952 0.075 | 33.94 0.960 0.097

Method

Table 1. Additional quantitative comparisons on Technicolor Light Field [11] dataset. The | best , the second best , and the third best are
colored in table cells. Results of DyNeRF [8] and HyperReel [1] are from their original paper, while we calculate metrics of all Gaussian-
based methods by running their official codes.
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Figure 1. Additional qualitative comparisons on Technicolor Light Field [11] dataset.
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Figure 2. Additional qualitative results on Grid4D+dec.

Table Size | PSNR SSIM LPIPS | Model Size (MB)

216 3297 0.974 0.043 16
217 33.05 0.974 0.043 31
218 33.08 0.975 0.041 60
219 33.16 0.980 0.040 115

Table 2. Additional quantitative ablation results on hash table size
in the cook spinach scene from Neural 3D Video [8] dataset.

Levels |PSNR SSIM LPIPS ‘ Model Size (MB)

8 13292 0974 0.045 28
16 | 33.08 0.975 0.042 57
24 | 33.14 0975 0.041 86
32 | 33.16 0.980 0.040 115

Table 3. Additional quantitative ablation results on the number of
hash resolution levels in the cook spinach scene from Neural 3D
Video [8] dataset.

Method |PSNR 1 SSIM 1 LPIPS |

Plane-based [12] + dec| 31.65 0.964 0.056
Grid-based [5] +dec | 31.74 0.967  0.049
Ours 32.22 0969 0.050

Table 4. Quantitative comparisons on Neural 3D Video dataset.

and timestamp dimensions. This may cause the local min-
ima of overfitting with training images in some complicated
scenes. Our method may fail in modeling large motions or

dramatic scene changes. This phenomenon is also observed
in previous NeRF-based methods [3, 8—10] and Gaussian-
based methods [5, 12, 13], producing blurring results. Fig. 3
shows some failed samples.

(a) Broom

(b) Teapot

Figure 3. Failure cases of modeling large motions and dramatic
scene changes. (a) The sudden motion of the broom makes op-
timization harder. (b) Teapots have large motion and a hand is
entering/leaving the scene.
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