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Supplementary Material

A. Limitations and Future Work

EC-Flow performs manipulation starting from a manually
set initial pose and computes the subsequent actions. Fu-
ture work may involve integrating the off-the-shelf grasping
pose generation models [2, 7] to facilitate starting position
initialization, thereby enhancing overall task efficiency.

Additionally, we aim to leverage foundation multi-modal
models to extract gripper state information directly from the
video dataset, which could then be integrated into the flow
prediction network to facilitate gripper state prediction.

B. Design Choices of EC-Flow

B.1. Trade-offs between EC-Flow and End-
Effector-Regression-Only Methods

End-effector-regression methods refer to those that directly
regress the end-effector (EEF) pose using re-projection er-
ror, without optimizing the full joint configuration. Table 1
compares the inference latency and task success rates of dif-
ferent methods. For our EC-Flow approach, flow prediction
requires 4.37 s for 8 frames—performed only once at the
start of each trajectory and not involved during execution.
This step could be further accelerated by replacing diffu-
sion with flow matching. The point projection step takes
0.01 s, while action computation takes 0.21 s when regress-
ing only the EEF pose, or 0.37 s when performing full-joint
optimization, due to the added cost of inverse kinematics
and optimization complexity.

In terms of task performance, the EEF-only baseline
shows a drop in success rates by 5.3% in simulation and
7.1% in the real world, while achieving 1.76× faster infer-
ence. The performance drop in simulation is mainly due
to the door-open task, where the EEF becomes heavily oc-
cluded. In the real world, it stems from the fold-towel task,
where the EEF shifts direction significantly—from the side
to the front—making it difficult to track the initial side-
view points. To address these challenges, we adopt full-
joint optimization, which helps mitigate occlusions and bet-
ter accommodate large directional changes of the EEF, at a
moderate computational cost. Additionally, joint-specific
weights in the re-projection error can be manually tuned
based on joint visibility or task requirements. To improve
optimization convergence and stability, we initialize from
the previous pose estimate.

Metric
Flow 3D Points Action Calc.

Pred. Proj. EEF Only Full Joints

Inf. Latency 4.37 s (only once) 0.01 s 0.21 s 0.37 s
Succ. Rate (sim / real) - - 66.7% / 70.0% 72.0% / 77.1%

Table 1. Inference latency and success rate of EC-Flow.

B.2. Goal Image VS. Object Flow Prediction
We initially explored object flow to support EC-Flow by
modeling object interaction, but found it struggles to con-
verge on deformable objects due to unstructured motion pat-
terns (such as folding towel), while goal image converges
faster and could also serve as a proxy for modeling interac-
tion. However, we agree that for complex tasks with multi-
ple required intermediate object states, object flow could be
more useful than using goal-image alone.

B.3. Sensitivity to Camera Pose Selection
Our EC-Flow method does not rely on a specific camera
pose that captures all robot joints in view. In practice, hav-
ing visibility of just 2–3 joints is sufficient for reliable action
computation. EC-Flow allows flexible inclusion of any vis-
ible joints in the optimization, adapting dynamically based
on their visibility.

However, it is crucial that the set of visible joints remains
consistent across frames. Since EC-flow is predicted only
from the initial frame, if a joint visible at the beginning be-
comes fully occluded later, the system may fail to track it,
potentially leading to execution failure.

C. Use of Internet Cross-Embodiment Data
To investigate the potential of cross-embodiment video data
under limited robot demonstrations, we conduct a prelim-
inary study on two representative tasks—door-open and
door-close—from the Meta-World benchmark [6]. We aug-
ment a small set of robot demonstrations with 50 human
videos of the same tasks sourced from the Something-
Something-v2 dataset [3].

We evaluate in a low-data regime with only 2 robot
demonstrations per task (compared to 5 in the standard set-
ting). As shown in Table 2, human video data alone fails to
achieve zero-shot transfer to the robot embodiment. Using
2 robot demos achieves a 46% success rate; adding 5 human
videos improves this to 52%, while incorporating 50 human
videos further boosts performance to 70%.

These results suggest that human videos provide valu-
able motion priors and can significantly enhance sample ef-



ficiency in robot learning. We believe that large-scale pre-
training on internet-scale human video datasets, followed
by robot-specific fine-tuning, represents a promising direc-
tion for future research.

Data Comp. 50  2Æ 5 + 2Æ 50 + 2Æ

Succ. Rate 0% 46% 52% 70%

Table 2. Success rate for robot and human data compositions.

D. Implementation Details

D.1. Real-World Setup

Our real-world setup is illustrated in Figure 1.
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Figure 1. The real-world setup of VERM.

D.2. Real-world Baselines
(1) BC: Standard behavior cloning baseline with dual-

stream encoder architecture. Processes RGB obser-
vations through ResNet-18 [4] and language instruc-
tions via CLIP [5], trained end-to-end on action-labeled
demonstrations.

(2) Track-2-Act [1]: An object-centric flow prediction
method that predicts object flow and calculates actions
from object movements.

D.3. Parameter Details

The parameters of the flow prediction and goal-image pre-
diction network are shown in Table 3 and Table 4 respec-
tively.

E. More Visualization Results

We demonstrate more visualization results of EC-Flow in
the Meta-World (Figure 2) and real-world (Figure 3). The
demonstration videos can be found on our project website.

Parameter Value

horizon 8
num points 400

img size 128
num sampling steps 250

batch size 56
optimizer AdamW

lr 5.0e-5
loss weight 1

transformer depth 24
transformer hidden size 1152
transformer num heads 16

mlp ratio 4.0
lang dim 1024
img dim 512

Table 3. Hyper-parameters of flow prediction network.

Parameter Value

horizon 8
num points 400

img size 128
num sampling steps 250

batch size 56
optimizer AdamW

lr 1.0e-4
loss weight 0.4

transformer depth 12
transformer hidden size 384
transformer num heads 6

patch size 16
lang dim 1024
img dim 512

Table 4. Hyper-parameters of goal image prediction network.
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Figure 2. Visualization of the EC-Flow in Meta-World.
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Figure 3. Visualization of the EC-Flow in the real-world.
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