Easi3R: Estimating Disentangled Motion from DUSt3R Without Training

Supplementary Material

In this supplementary document, we first present ad-
ditional method details on temporal consistency dynamic
object segmentation in Appendix A. Next, we conduct ab-
lation studies of Easi3R in Appendix B and analysis limita-
tions in Appendix C. Lastly, we report additional qualitative
results in Appendix D. We invite readers to easi3r.github.io
for better visualization.

A. Dynamic Object Segmentation

We have presented dynamic object segmentation for a sin-
gle frame in Section 3.3, now we introduce how to ensure
consistency along the temporal axis. Given image feature
tokens F for frames at ¢, output from the image encoder,
we concatenate them along the temporal dimension,

F = [F§;F3;.. . Fl] e RUxhxwixe (12)
where c is the feature dimension of the tokens. This al-
lows us to apply k-means clustering to group similar fea-
tures across frames, producing cluster assignments,

C = KMeans(F, k), C'(z,y) € {1,...,k}, Vt,z,y (13)

where k is the number of clusters, we use k = 64 for all
experiments.

For each cluster ¢ € {1, ..., k}, we compute a dynamic
score s. by averaging the base dynamic attention values of
all tokens within that cluster:

o — Zt Zi,j H[Ct(x’ y) = At:dyn(x’ Y)
‘ Zt Zz,y H[Ct({Ij’ y) = C]

where 1[-] denotes the indicator function. We then use these
scores to generate a cluster-fused dynamic attention map,
mapping each pixel’s cluster assignment back to its corre-
sponding dynamic score,

(14)

At:dyn(mvy) = SCt(x,y) (15)

fuse

The refined dynamic attention map A" € R"*® is

used to infer the dynamic object segmentation by,

M (z,y) = AR (2,y) > o] (16)
where o is an automatic image thresholding using Otsu’s
method [36]. This refinement enforces temporal consis-
tency by ensuring similar features across frames receive
consistent dynamic scores, as shown in Figure 8. The re-
sulting dynamic object segmentation is further utilized in
the second inference pass and global optimization.

Video

Figure 8. Benefits of Cross-frame Feature Clustering. We visu-
alize the dynamic attention map A'=%", cluster assignments C*,
and cluster-fused dynamic attention map AEE: . Features from
the DUSt3R encoder exhibit temporal consistency, as cluster as-
signments (C") remain unchanged across frames, thereby enhanc-
ing temporal consistency in dynamic segmentation (A'=%"fuse)
through clustering-guided temporal fusing. For better visual intu-
ition, we invite readers to easi3r.github.io.

Table 6. Ablation of Dynamic Object Segmentation on DAVIS.

| DAVIS-16 | DAVIS-17 | DAVIS-all

Backbone  Ablation | IMt IRt | IMT IRt | IMTIRT
wio Ag=se 45.1 452 | 428 399 | 422 385
wlo As=sre 423 500 | 350 37.0 | 309 283
wlo Aa=ref 333 284 | 315 279|325 297
[
DUSBR o Ar=rel 477 541 | 462 543 | 437 486
wlo Clustering | 40.0 385 | 383 383 | 343 305
Full 531 604 | 49.0 564 | 445 49.6
wlo Au=se 472 515 | 444 467 | 409 415
wlo AT=sre 497 60.1 | 48.7 57.8 | 449 49.6
wlo Aa=ref 464 540 | 474 559 | 453 507
i
MonST3R ) A=t 507 62.6 | 51.0 602 | 503 56.8
w/o Clustering | 45.5 46.7 | 453 48.1 | 42.1 435
Full 577 71.6 | 565 68.6 | 53.0 63.4
B. Ablation Study

Our ablation lies in two folds: dynamic object segmen-
tation and 4D reconstruction. For dynamic object seg-
mentation, as shown in Table 11 we ablate the contri-
bution of four aggregated temporal cross-attention maps,
AT AT Affr"’f, A= and feature clustering. The
ablation results show that (1) Disabling any temporal cross-
attention map leads to a performance drop, indicating that
all attention maps contribute to improved dynamic object
segmentation; and (2) Features from the DUSt3R encoder
exhibit temporal consistency and enhance dynamic segmen-
tation through cross-frame clustering.

Table 7 presents ablation studies on 4D reconstruction,
evaluating two key design choices: (1) the impact of two-
branch re-weighting (applying attention re-weighting to
both reference and source decoders) and (2) global align-
ment using optical flow with and without segmentation. The
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Table 7. Ablation Study of Camera Pose Estimation and Point Cloud Reconstruction on the DyCheck dataset.

Pose Estimation Reconstruction
Accuracyl Completeness.. Distance
Backbone Re-weighting Flow-GA ATE]  RTE]  RRE} Mean  Median | Mean  Median | Mean  Median
Ref + Src X 0.030 0.026 1.777 0.775 0.596 1.848 0.778 0.342 0.224
DUSGR Ref X 0.029 0.025 1.774 0.772 0.596 1.813 0.757 0.336 0.219
Ref w/o Mask 0.026 0.017 1.472 0.940 0.831 1.654 0.685 0.336 0.220
Ref w/ Mask 0.021 0.014 1.092 0.703 0.589 1.474 0.586 0.301 0.186
Ref + Src X 0.040 0.032 1.751 0.848 0.744 1.850 1.003 0.398 0.292
Ref X 0.038 0.032 1.736 0.846 0.660 1.840 0.983 0.390 0.290
MonST3R
Ref w/o Mask 0.033 0.023 1.495 0.969 0.796 1.752 0.998 0.368 0.273
Ref w/ Mask 0.030 0.021 1.390 0.834 0.643 1.661 0.916 0.350 0.255
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Figure 9. Limitation. We visualize static reconstructions from
two different viewpoints in the top and bottom rows. Easi3R
improves camera pose estimation and point cloud reconstruc-
tion (top row), enhancing alignment in structures like swing
supports through attention re-weighting and segmentation-aware
global alignment. However, from another viewpoint (bottom row),
Easi3R still produces floaters near object boundaries.

ablation results show that (1) Re-weighting only the refer-
ence view decoder outperforms re-weighting both branches.
Since the reference and source decoders serve different
roles, and the reference view acts as the static standard, this
aligns with our design intuition (i); and (2) Incorporating
segmentation in global alignment consistently improves 4D
reconstruction quality.

C. Limitations

Despite strong performance on various in-the-wild videos,
Easi3R can fail when the DUSt3R/MonST3R backbones
produce inaccurate depth predictions. While Easi3R ef-
fectively improves camera pose estimation and point cloud
reconstruction, as shown in Table 5 of the main paper, it
provides clear improvements in completeness and distance
metrics, which are measured on the global point cloud.
However, a noticeable gap remains in depth accuracy, which

Figure 10. Dynamic masks in static scene. Easi3R tends to
reweight low confident regions in static scenes, leading to better
pose estimation, as shown in Tab. 9.

Sintel BONN KITTI
Alignment Method AbsRel | §<1.251 ‘Abs Rel | §<1.251 ‘Abs Rel | § <1.251
Marigold 0532 515 0.091 93.1 0.1499  79.6
DepthAnythingV2  0.367 55.4 0.106 921 0.140 80.4
NVDS 0408 483 0.167 76.6 0253 58.8
ChronoDepth 0.687 48.6 0.100 911 0.167 75.9
DepthCrafter 0292 697 0075 971 | 0.110 88.1
Robust-CVD 0.703 478 - - - -
CasualSAM 0387 54.7 0.160 737 0246 622
Per-sequence MAS3R 0.327 59.4 0.167 785 0.137 83.6
scale & shift Spann3R 0508 508 | 0157 81 | 0207 730
CUT3R 0454 557 0074 945 0106 887
DUSBR 0531 512 0.156 83.1 0.135 81.8
MonST3R 0333 590 | 0066 964 0.157 738
Easi3R 0 0435 59.1 0.085 91.1 0.155 76.1
Easi3Rpmons 0316 593 0057 972 0.092  90.6
MASBR 0.641 439 0252 70.1 0.183 745
Spann3R 0622 426 0.144 81.3 0.198 73.7
CUT3R 0421 479 0.078 93.7 0118 881
Per-sequence scale. DUSUR 0656 452 0.155 83.3 0.144 81.3
MonST3R 0378 558 | 0067 963 | 0.168 74.4
Easi3Ryur 0577 519 0086 903 0.170 742
Easi3Rponr 0377 559 0059 970 0102 912

Table 8. Video Depth Evaluation. We use the evaluation results
from CUT3R for baselines.

is evaluated on per-view outputs. This is because our
method focuses mainly on improving dynamic regions and
global alignment rather than correcting depth predictions in
static parts, as illustrated in Figure 9. We leave per-view
depth correction for future work.

D. Addtional Results

More Evaluation. We evaluated on full-length sequences
with downsampling only for GPU fit, leading to more dy-
namic and challenging motion than prior short-clip settings.
For a more general evaluation, we also include MonST3R
and CUT3R evaluation protocols. Tab. 8 and Tab. 9 confirm
the effectiveness.



Sintel TUM-dynamics ScanNet (static)

Category  Method ATE | RPEtrans | RPErot | |ATE | RPE trans | RPErot || ATE | RPE trans | RPErot
DROID-SLAM 0.175  0.084 1912

Posconly  DPVO 0.115  0.072 1975 - - - - - -
Particle-StM ~ 0.129  0.031 0535 - - - 0.136  0.023 0.836
LEAP-VO 0.089  0.066 1250 | 0068  0.008 1686 | 0.070  0.018 0535
Robust-CVD ~ 0.360  0.154 3443|0153 0026 3528 0227 0.064 7374
CasualSAM  0.141  0.035 0615 | 0071  0.010 1712 0158 0034 1618
MASGR 0.185  0.060 1496 | 0.038 0012 0448 | 0078 0.020 0475
Spann3R 0329 0.110 4471 0056 0021 0591 | 009 0023 0.661

Pose & Depth CUT3R 0213 0.066 0621 | 0046 0015 0473|0099 0022 0.600
DUSGR 0417 0250 5796 |0.083 0017 3567 | 0081 0028 0784
MonST3R 0111 0.044 0869 |0.098 0019 0935 | 0077 0018 0529
EasidRyus 0402 0.098 0876 | 0134 0017 1077 0067 0018 0.670
Easi3Ryony: 0110 0.042 0758 | 0105 0022 1064 | 0.061  0.017 0525

Table 9. Camera Pose Evaluation. We use the evaluation results
from CUT3R for baselines.

Input Output DAVIS-16 DAVIS-17
Supervision Method RGB  Optical Flow  Point Tracks | Mask 4D Reconstruction | JMT  JM-M 1 | IM{ JM-M
SFL v 's v 674 - -
SIMO v v v 67.8 - - -
OCLR-flow v v v 720 700 | - 699
Supervised  OCLR-TTA v v v 808 802 | - 760
FlowSAM v v v 8.1 857 | - -
SegAnyMo v v v %6 892 | - 900
DAS3R v v v 542 516 574 555
SAGE v v v 426
cuT v ' v 552
FTS v ' v 558 -
cis v v v 703 676
Unsupervised  Motion Grouping v/ v v 683 -
EM v v v 693 762
RCF-Stagel v ' v 802 78.6
RCF-All v v v 82.1 81.0
LRTL v v v v 822 - - -
MonST3R v v v ' 643 61.4 56.4 59.0
Zero-shot Easi3R o v v v 619 674 | 601 620
Easi. 3 v v v 70.7 711 679 67.7

Table 10. Comparisons of Dynamic Object Segmentation on
DAVIS with 2D dynamic segmentation methods.

DAVIS-16  DAVIS-17  DAVIS-all

Ablation Variants IMt IRt | IMTJRT | IMP IRt
3 760 892 | 708 824 | 657 762

Window Size 5% 707 799 | 67.9 761 | 63.1 726
7 669 769 | 639 733 | 610 68.8

16 674 791|646 737|607 652

32 716 839 | 680 783|651 752

Number of Clusters 64* 707 799 | 679 76.1 | 63.1 72.6
128 69.9 799 | 663 762 | 62.9 73.1

0.5 616 645|610 652|616 678

Thresholding Values 0.7 702 850 | 62.8 718 | 58.1 67.0
Otsu’s method* 707 79.9 | 679 76.1 | 63.1 72.6

Table 11. More ablations on segmentation quality using
DAVIS. * denotes the value used in the submission.

Behavior for Static Scenes. Interestingly, our method also
improves on static scenes (ScanNet in Tab. 9 and Fig. 10),
owing to our attention reweighting.

Comparison with 2D Baselines. We also include a com-
parison with 2D baselines. As shown in Tab. 10, Easi3R
achieves SOTA segmentation in a zero-shot manner with
only the image as input.

More Ablation. We further ablate the default settings -
window size of 5, 64 clusters, and Otsu’s method in Tab. 11.
Using the recent segmentation method SegAnyMo, pose ac-
curacy improves by 9.62% and depth accuracy improves by
4.11% on the Sintel dataset.

Runtime Our method runs at almost the same speed as
MonST3R. MonST3R runs at 0.33 FPS, while Easi3R

achieves 0.31 FPS for 512 x 144 image resolution on an
NVIDIA RTX 4090 GPU.

Qualitative Results We report additional qualitative re-
sults of disentangled 4D reconstruction in Figure 11, Fig-
ure 12 and Figure 13. We find that MonST3R tends to
predict under-segmented dynamic masks, while DAS3R
tends to predict over-segmented dynamic masks. CUT3R,
although it produces more accurate depth estimation, is
prone to being affected by dynamic objects, leading to mis-
aligned static structures, unstable camera pose estimation,
and ghosting artifacts due to the lack of dynamic segmenta-
tion prediction. In contrast, Easi3R achieves more accurate
segmentation, camera pose estimation, and 4D reconstruc-
tion, resulting in renderings with better visual quality.



CUT?3R [63] MonST3R [73] DAS3R [68]

Figure 11. Qualitative Comparison. We visualize cross-frame globally aligned static scenes with dynamic point clouds at a selected
timestamp. Notably, instead of using ground truth dynamic masks in previous work, we apply the estimated per-frame dynamic masks to
filter out dynamic points at other timestamps for comparison. Top and bottom rows are Easi3R qusarmonstr, respectively.
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Figure 12. Disentanglement vs. MonST3R [73]. We visualize the disentangled 4D reconstruction, static scene and dynamic objects at
different frames. MonST3R tends to predict under-segmented dynamic masks.
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Figure 13. Disentanglement vs. DAS3R [68]. We visualize the disentangled 4D reconstruction, static scene and dynamic objects at
different frames. DAS3R tends to predict over-segmented dynamic masks.





