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Supplementary Material

In this supplementary document, we first present ad-
ditional method details on temporal consistency dynamic
object segmentation in Appendix A. Next, we conduct ab-
lation studies of Easi3R in Appendix B and analysis limita-
tions in Appendix C. Lastly, we report additional qualitative
results in Appendix D. We invite readers to easi3r.github.io
for better visualization.

A. Dynamic Object Segmentation
We have presented dynamic object segmentation for a sin-
gle frame in Section 3.3, now we introduce how to ensure
consistency along the temporal axis. Given image feature
tokens Ft

0 for frames at t, output from the image encoder,
we concatenate them along the temporal dimension,

F̄ = [F1
0;F

2
0; . . . ;F

T
0 ] ∈ R(T×h×w)×c (12)

where c is the feature dimension of the tokens. This al-
lows us to apply k-means clustering to group similar fea-
tures across frames, producing cluster assignments,

C = KMeans(F̄, k), Ct(x, y) ∈ {1, . . . , k}, ∀t, x, y (13)

where k is the number of clusters, we use k = 64 for all
experiments.

For each cluster c ∈ {1, . . . , k}, we compute a dynamic
score sc by averaging the base dynamic attention values of
all tokens within that cluster:

sc =

∑
t

∑
i,j 1[C

t(x, y) = c] ·At=dyn(x, y)∑
t

∑
x,y 1[C

t(x, y) = c]
(14)

where 1[·] denotes the indicator function. We then use these
scores to generate a cluster-fused dynamic attention map,
mapping each pixel’s cluster assignment back to its corre-
sponding dynamic score,

At=dyn
fuse (x, y) = sCt(x,y) (15)

The refined dynamic attention map At=dyn
fuse ∈ Rh×w is

used to infer the dynamic object segmentation by,

Mt(x, y) = 1[At=dyn
fuse (x, y) > α] (16)

where α is an automatic image thresholding using Otsu’s
method [36]. This refinement enforces temporal consis-
tency by ensuring similar features across frames receive
consistent dynamic scores, as shown in Figure 8. The re-
sulting dynamic object segmentation is further utilized in
the second inference pass and global optimization.
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Figure 8. Benefits of Cross-frame Feature Clustering. We visu-
alize the dynamic attention map At=dyn, cluster assignments Ct,
and cluster-fused dynamic attention map At=dyn

fuse . Features from
the DUSt3R encoder exhibit temporal consistency, as cluster as-
signments (Ct) remain unchanged across frames, thereby enhanc-
ing temporal consistency in dynamic segmentation (At=dynfuse)
through clustering-guided temporal fusing. For better visual intu-
ition, we invite readers to easi3r.github.io.

Table 6. Ablation of Dynamic Object Segmentation on DAVIS.

DAVIS-16 DAVIS-17 DAVIS-all

Backbone Ablation JM↑ JR↑ JM↑ JR↑ JM↑ JR↑

DUSt3R

w/o Aa=src
µ 45.1 45.2 42.8 39.9 42.2 38.5

w/o Aa=src
σ 42.3 50.0 35.0 37.0 30.9 28.3

w/o Aa=ref
µ 33.3 28.4 31.5 27.9 32.5 29.7

w/o Aa=ref
σ 47.7 54.1 46.2 54.3 43.7 48.6

w/o Clustering 40.0 38.5 38.3 38.3 34.3 30.5
Full 53.1 60.4 49.0 56.4 44.5 49.6

MonST3R

w/o Aa=src
µ 47.2 51.5 44.4 46.7 40.9 41.5

w/o Aa=src
σ 49.7 60.1 48.7 57.8 44.9 49.6

w/o Aa=ref
µ 46.4 54.0 47.4 55.9 45.3 50.7

w/o Aa=ref
σ 50.7 62.6 51.0 60.2 50.3 56.8

w/o Clustering 45.5 46.7 45.3 48.1 42.1 43.5
Full 57.7 71.6 56.5 68.6 53.0 63.4

B. Ablation Study

Our ablation lies in two folds: dynamic object segmen-
tation and 4D reconstruction. For dynamic object seg-
mentation, as shown in Table 11 we ablate the contri-
bution of four aggregated temporal cross-attention maps,
Aa=src

µ ,Aa=src
σ ,Aa=ref

µ ,Aa=ref
σ , and feature clustering. The

ablation results show that (1) Disabling any temporal cross-
attention map leads to a performance drop, indicating that
all attention maps contribute to improved dynamic object
segmentation; and (2) Features from the DUSt3R encoder
exhibit temporal consistency and enhance dynamic segmen-
tation through cross-frame clustering.

Table 7 presents ablation studies on 4D reconstruction,
evaluating two key design choices: (1) the impact of two-
branch re-weighting (applying attention re-weighting to
both reference and source decoders) and (2) global align-
ment using optical flow with and without segmentation. The
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Table 7. Ablation Study of Camera Pose Estimation and Point Cloud Reconstruction on the DyCheck dataset.

Pose Estimation Reconstruction

ATE↓ RTE↓ RRE↓ Accuracy↓ Completeness↓ Distance↓
Backbone Re-weighting Flow-GA Mean Median Mean Median Mean Median

DUSt3R

Ref + Src ✗ 0.030 0.026 1.777 0.775 0.596 1.848 0.778 0.342 0.224
Ref ✗ 0.029 0.025 1.774 0.772 0.596 1.813 0.757 0.336 0.219

Ref w/o Mask 0.026 0.017 1.472 0.940 0.831 1.654 0.685 0.336 0.220
Ref w/ Mask 0.021 0.014 1.092 0.703 0.589 1.474 0.586 0.301 0.186

MonST3R

Ref + Src ✗ 0.040 0.032 1.751 0.848 0.744 1.850 1.003 0.398 0.292
Ref ✗ 0.038 0.032 1.736 0.846 0.660 1.840 0.983 0.390 0.290

Ref w/o Mask 0.033 0.023 1.495 0.969 0.796 1.752 0.998 0.368 0.273
Ref w/ Mask 0.030 0.021 1.390 0.834 0.643 1.661 0.916 0.350 0.255

DUSt3R [64] Ours

Figure 9. Limitation. We visualize static reconstructions from
two different viewpoints in the top and bottom rows. Easi3R
improves camera pose estimation and point cloud reconstruc-
tion (top row), enhancing alignment in structures like swing
supports through attention re-weighting and segmentation-aware
global alignment. However, from another viewpoint (bottom row),
Easi3R still produces floaters near object boundaries.

ablation results show that (1) Re-weighting only the refer-
ence view decoder outperforms re-weighting both branches.
Since the reference and source decoders serve different
roles, and the reference view acts as the static standard, this
aligns with our design intuition (i); and (2) Incorporating
segmentation in global alignment consistently improves 4D
reconstruction quality.

C. Limitations

Despite strong performance on various in-the-wild videos,
Easi3R can fail when the DUSt3R/MonST3R backbones
produce inaccurate depth predictions. While Easi3R ef-
fectively improves camera pose estimation and point cloud
reconstruction, as shown in Table 5 of the main paper, it
provides clear improvements in completeness and distance
metrics, which are measured on the global point cloud.
However, a noticeable gap remains in depth accuracy, which
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Figure 10. Dynamic masks in static scene. Easi3R tends to
reweight low confident regions in static scenes, leading to better
pose estimation, as shown in Tab. 9.

Sintel BONN KITTI

Alignment Method Abs Rel ↓ δ<1.25 ↑ Abs Rel ↓ δ<1.25 ↑ Abs Rel ↓ δ <1.25 ↑

Per-sequence
scale & shift

Marigold 0.532 51.5 0.091 93.1 0.149 79.6
DepthAnythingV2 0.367 55.4 0.106 92.1 0.140 80.4
NVDS 0.408 48.3 0.167 76.6 0.253 58.8
ChronoDepth 0.687 48.6 0.100 91.1 0.167 75.9
DepthCrafter 0.292 69.7 0.075 97.1 0.110 88.1
Robust-CVD 0.703 47.8 - - - -
CasualSAM 0.387 54.7 0.169 73.7 0.246 62.2
MASt3R 0.327 59.4 0.167 78.5 0.137 83.6
Spann3R 0.508 50.8 0.157 82.1 0.207 73.0
CUT3R 0.454 55.7 0.074 94.5 0.106 88.7
DUSt3R 0.531 51.2 0.156 83.1 0.135 81.8
MonST3R 0.333 59.0 0.066 96.4 0.157 73.8
Easi3Rdust3r 0.435 59.1 0.085 91.1 0.155 76.1
Easi3Rmonst3r 0.316 59.3 0.057 97.2 0.092 90.6

Per-sequence scale

MASt3R 0.641 43.9 0.252 70.1 0.183 74.5
Spann3R 0.622 42.6 0.144 81.3 0.198 73.7
CUT3R 0.421 47.9 0.078 93.7 0.118 88.1
DUSt3R 0.656 45.2 0.155 83.3 0.144 81.3
MonST3R 0.378 55.8 0.067 96.3 0.168 74.4
Easi3Rdust3r 0.577 51.9 0.086 90.3 0.170 74.2
Easi3Rmonst3r 0.377 55.9 0.059 97.0 0.102 91.2

Table 8. Video Depth Evaluation. We use the evaluation results
from CUT3R for baselines.

is evaluated on per-view outputs. This is because our
method focuses mainly on improving dynamic regions and
global alignment rather than correcting depth predictions in
static parts, as illustrated in Figure 9. We leave per-view
depth correction for future work.

D. Addtional Results

More Evaluation. We evaluated on full-length sequences
with downsampling only for GPU fit, leading to more dy-
namic and challenging motion than prior short-clip settings.
For a more general evaluation, we also include MonST3R
and CUT3R evaluation protocols. Tab. 8 and Tab. 9 confirm
the effectiveness.



Sintel TUM-dynamics ScanNet (static)

Category Method ATE ↓ RPE trans ↓ RPE rot ↓ ATE ↓ RPE trans ↓ RPE rot ↓ ATE ↓ RPE trans ↓ RPE rot ↓

Pose only

DROID-SLAM 0.175 0.084 1.912 - - - - - -
DPVO 0.115 0.072 1.975 - - - - - -
Particle-SfM 0.129 0.031 0.535 - - - 0.136 0.023 0.836
LEAP-VO 0.089 0.066 1.250 0.068 0.008 1.686 0.070 0.018 0.535

Pose & Depth

Robust-CVD 0.360 0.154 3.443 0.153 0.026 3.528 0.227 0.064 7.374
CasualSAM 0.141 0.035 0.615 0.071 0.010 1.712 0.158 0.034 1.618
MASt3R 0.185 0.060 1.496 0.038 0.012 0.448 0.078 0.020 0.475
Spann3R 0.329 0.110 4.471 0.056 0.021 0.591 0.096 0.023 0.661
CUT3R 0.213 0.066 0.621 0.046 0.015 0.473 0.099 0.022 0.600
DUSt3R 0.417 0.250 5.796 0.083 0.017 3.567 0.081 0.028 0.784
MonST3R 0.111 0.044 0.869 0.098 0.019 0.935 0.077 0.018 0.529
Easi3Rdust3r 0.402 0.098 0.876 0.134 0.017 1.077 0.067 0.018 0.670
Easi3Rmonst3r 0.110 0.042 0.758 0.105 0.022 1.064 0.061 0.017 0.525

Table 9. Camera Pose Evaluation. We use the evaluation results
from CUT3R for baselines.

Input Output DAVIS-16 DAVIS-17

Supervision Method RGB Optical Flow Point Tracks Mask 4D Reconstruction JM↑ JM-M ↑ JM↑ JM-M ↑

Supervised

SFL ✓ ✓ ✓ 67.4 - - -
SIMO ✓ ✓ ✓ 67.8 - - -
OCLR-flow ✓ ✓ ✓ 72.0 70.0 - 69.9
OCLR-TTA ✓ ✓ ✓ 80.8 80.2 - 76.0
FlowSAM ✓ ✓ ✓ 87.1 85.7 - -
SegAnyMo ✓ ✓ ✓ 90.6 89.2 - 90.0
DAS3R ✓ ✓ ✓ 54.2 51.6 57.4 55.5

Unsupervised

SAGE ✓ ✓ ✓ 42.6 - - -
CUT ✓ ✓ ✓ 55.2 - - -
FTS ✓ ✓ ✓ 55.8 - - -
CIS ✓ ✓ ✓ 70.3 67.6 - -
Motion Grouping ✓ ✓ ✓ 68.3 - - -
EM ✓ ✓ ✓ 69.3 76.2 - -
RCF-Stage1 ✓ ✓ ✓ 80.2 78.6 - -
RCF-All ✓ ✓ ✓ 82.1 81.0 - -
LRTL ✓ ✓ ✓ ✓ 82.2 - - -

Zero-shot
MonST3R ✓ ✓ ✓ ✓ 64.3 61.4 56.4 59.0
Easi3Rdust3r ✓ ✓ ✓ 67.9 67.4 60.1 62.0
Easi3Rmonst3r ✓ ✓ ✓ 70.7 71.1 67.9 67.7

Table 10. Comparisons of Dynamic Object Segmentation on
DAVIS with 2D dynamic segmentation methods.

DAVIS-16 DAVIS-17 DAVIS-all

Ablation Variants JM↑ JR↑ JM↑ JR↑ JM↑ JR↑

Window Size
3 76.0 89.2 70.8 82.4 65.7 76.2
5* 70.7 79.9 67.9 76.1 63.1 72.6
7 66.9 76.9 63.9 73.3 61.0 68.8

Number of Clusters

16 67.4 79.1 64.6 73.7 60.7 65.2
32 71.6 83.9 68.0 78.3 65.1 75.2

64* 70.7 79.9 67.9 76.1 63.1 72.6
128 69.9 79.9 66.3 76.2 62.9 73.1

Thresholding Values
0.5 61.6 64.5 61.0 65.2 61.6 67.8
0.7 70.2 85.0 62.8 71.8 58.1 67.0

Otsu’s method* 70.7 79.9 67.9 76.1 63.1 72.6

Table 11. More ablations on segmentation quality using
DAVIS. * denotes the value used in the submission.

Behavior for Static Scenes. Interestingly, our method also
improves on static scenes (ScanNet in Tab. 9 and Fig. 10),
owing to our attention reweighting.

Comparison with 2D Baselines. We also include a com-
parison with 2D baselines. As shown in Tab. 10, Easi3R
achieves SOTA segmentation in a zero-shot manner with
only the image as input.

More Ablation. We further ablate the default settings -
window size of 5, 64 clusters, and Otsu’s method in Tab. 11.
Using the recent segmentation method SegAnyMo, pose ac-
curacy improves by 9.62% and depth accuracy improves by
4.11% on the Sintel dataset.

Runtime Our method runs at almost the same speed as
MonST3R. MonST3R runs at 0.33 FPS, while Easi3R
achieves 0.31 FPS for 512 × 144 image resolution on an
NVIDIA RTX 4090 GPU.

Qualitative Results We report additional qualitative re-
sults of disentangled 4D reconstruction in Figure 11, Fig-
ure 12 and Figure 13. We find that MonST3R tends to
predict under-segmented dynamic masks, while DAS3R
tends to predict over-segmented dynamic masks. CUT3R,
although it produces more accurate depth estimation, is
prone to being affected by dynamic objects, leading to mis-
aligned static structures, unstable camera pose estimation,
and ghosting artifacts due to the lack of dynamic segmenta-
tion prediction. In contrast, Easi3R achieves more accurate
segmentation, camera pose estimation, and 4D reconstruc-
tion, resulting in renderings with better visual quality.
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Figure 11. Qualitative Comparison. We visualize cross-frame globally aligned static scenes with dynamic point clouds at a selected
timestamp. Notably, instead of using ground truth dynamic masks in previous work, we apply the estimated per-frame dynamic masks to
filter out dynamic points at other timestamps for comparison. Top and bottom rows are Easi3R dust3r/monst3r, respectively.
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Figure 12. Disentanglement vs. MonST3R [73]. We visualize the disentangled 4D reconstruction, static scene and dynamic objects at
different frames. MonST3R tends to predict under-segmented dynamic masks.
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Figure 13. Disentanglement vs. DAS3R [68]. We visualize the disentangled 4D reconstruction, static scene and dynamic objects at
different frames. DAS3R tends to predict over-segmented dynamic masks.




