EgoAgent: A Joint Predictive Agent Model in Egocentric Worlds

Supplementary Material

1. Additional Results on Egocentric Future
State Prediction

In this section, we provide additional qualitative results on
the egocentric future state prediction task. Additionally, we
describe our approach to fine-tune a video diffusion model,
OpenSora [9], on the Ego-Exo04D dataset [2] and generate
future video frames conditioned on initial frames as shown
in Fig. 1.

1.1. Visualizations and Comparisons

We provide more visualizations of the prediction results
from our EgoAgent, DoRA [6], and fine-tuned Open-
Sora [9] in different scenes in Fig. 2. For OpenSora, when
predicting the states of 5, we use all the ground truth frames
from ¢ to t;_1 as conditions. As OpenSora takes only past
observations as input and neglects human motion, it per-
forms well only when the human has relatively small mo-
tions (see the top two cases in Fig. 2), but can not adjust
to large movements of the human body or quick viewpoint
changes (see the bottom two cases in Fig. 2).

1.2. Finetuning OpenSora on Ego-Exo4D

OpenSora [9], initially trained on Internet videos and im-
ages, produces severely inconsistent results when directly
applied to infer future videos on the Ego-Exo4D dataset, as
illustrated in Fig. 1. To address the gap between general In-
ternet content and egocentric video data, we fine-tuned the
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Figure 1. Comparison of OpenSora V1.1 first-frame-conditioned
video generation results before and after finetuning on Ego-
Exo04D. Fine-tuning enhances temporal consistency, but the pre-
dicted pixel-space future states still exhibit errors, such as inaccu-
racies in the basketball’s trajectory.

official OpenSora V1.1 checkpoint on the Ego-Exo04D train-
ing set for 50 epochs. OpenSora V1.1 proposed a random
mask strategy during training to enable video generation
by image and video conditioning. We adopted the default
masking rate, which applies: 75% with no masking, 2.5%
with random masking of 1 frame to 1/4 of the total frames,
2.5% with masking at either the beginning or the end for 1
frame to 1/4 of the total frames, and 5% with random mask-
ing spanning 1 frame to 1/4 of the total frames at both the
beginning and the end.

As shown in Fig. |, despite being trained on a large
dataset, OpenSora struggles to generalize to the Ego-Exo4D
dataset, producing future video frames with minimal consis-
tency relative to the conditioning frame. While fine-tuning
improves temporal consistency, the moving trajectories of
objects like the basketball and soccer ball still deviate from
real physical laws. Compared with our feature space pre-
diction results, this suggests that training world models in a
reconstructive latent space is more challenging than training
them in a feature space.

2. Additional Results on 3D Human Motion
Prediction

We present additional qualitative results for the 3D human
motion prediction task, highlighting a particularly challeng-
ing scenario where egocentric observations exhibit mini-
mal variation. This scenario poses significant difficulties
for video-conditioned motion prediction, as the model must
effectively capture and interpret subtle changes. As demon-
strated in Fig. 3, EgoAgent successfully generates accurate
predictions that closely align with the ground truth motion,
showecasing its ability to handle fine-grained temporal dy-
namics and nuanced contextual cues.

3. Action Affects the Perceptual Area

We visualize the attention map of EgoAgent’s first trans-
former head in the representation and action prediction
tasks. As shown in Fig. 4, when provided with only the
egocentric image, EgoAgent focuses on the ball. Upon re-
ceiving the action query token, it shifts attention to the hu-
man body part (the right foot at ¢y and the left foot at ¢;)
in line with the ground truth body motion, indicating that
actions can guide the model to focus on task-related areas.

4. OpenSora for Image Classification

In this section, we detail the process of extracting features
from OpenSora V1.1 [9] (without fine-tuning) for an im-
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Figure 2. Retrieval and generation results for egocentric future state prediction. Correct and wrong retrieval images are marked with green
and red borders, respectively.
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Figure 3. 3D Human motion prediction results in scenes with minor changes in egocentric observations.

to
Motion: kickthe ball

\ ¢

iot
e

21
Motion: kick the ball

with the with the foot

Representation
attention map

Representation
attention map

Action prediction
attention map

Action prediction
attention map

Figure 4. Attention map of EgoAgent performing visual represen-
tation and action prediction task. EgoAgent attends to the moving
body part in the image when predicting future actions.

age classification task. Following the approach of [7], we
leverage the insight that diffusion models can be interpreted
as multi-level denoising autoencoders. These models in-
herently learn linearly separable representations within their
intermediate layers, without relying on auxiliary encoders.
The quality of the extracted features depends on both the
layer depth and the noise level applied during extraction.
As shown in Tab. 1, we first evaluate £-NN classifica-

Table 1. k-NN evaluation results of OpenSora V1.1 features from
different layer depths and noising scales on ImageNet-100. Topl
and Top5 accuracy (%) are reported.

. First Layer Middle Layer Last Layer

Timesteps

Topl Top5 Topl Top5 Topl Top5
32 6.10 18.20 34.04 5950 30.40 55.74
64 6.12 1848 36.04 61.84 31.80 57.06
128 5.84 18.14 38.08 64.16 33.44 5842
256 560 16.58 30.34 5638 28.14 5232
512 366 11.70 624 17.62 724 1944

tion performance on the ImageNet-100 dataset using three
intermediate layers and five different noise scales. We find
that a noise timestep of 128 yields the best results, with the
middle and last layers performing significantly better than
the first layer. We then test this optimal configuration on
ImageNet-1K and find that the last layer with 128 noising
timesteps achieves the best classification accuracy.

5. Data Preprocess

For egocentric video sequences, we utilize videos from the
Ego-Exo4D [2] and WalkingTours (WT) [6] datasets. The
original resolution of Ego-Exo4D videos is 14081408,
captured at 30 fps. We sample one frame every five
frames and use the original resolution to crop local views
(224 x224) for computing the self-supervised representa-
tion loss [1]. For computing the prediction and action loss,
the videos are downsampled to 224 x224 resolution. WT
primarily consists of 4K videos (3840x2160) recorded at
60 or 30 fps. Similar to Ego-Ex04D, we use the original
resolution and downsample the frame rate to 6 fps for rep-
resentation loss computation. As Ego-Exo4D employs fish-



Table 2. Architecture configurations of EgoAgent.

EgoAgent-300M  EgoAgent-1B

Depth 22 22
Embedding dim 1024 20438
Number of heads 8 16
MLP ratio 8/3 8/3
#Param. 284M 1.13B

eye cameras, we undistort the images to a pinhole camera
model using the official Project Aria Tools to align them
with the WT videos.

For motion sequences, the Ego-Exo4D dataset provides
synchronized 3D motion annotations and camera extrinsic
parameters for various tasks and scenes. While some anno-
tations are manually labeled, others are automatically gen-
erated using 3D motion estimation algorithms from multi-
ple exocentric views. To maximize data utility and main-
tain high-quality annotations, manual labels are prioritized
wherever available, and automated annotations are used
only when manual labels are absent. Each pose is con-
verted into the egocentric camera’s coordinate system using
transformation matrix derived from the camera extrinsics.
These transformation matrices also enable the computation
of trajectory vectors for each frame in a sequence. Beyond
the x, y, z coordinates, a visibility dimension is appended to
account for keypoints invisible to all exocentric views. Fi-
nally, a sliding window approach segments sequences into
fixed-size windows to serve as input to the model. Note that
we do not downsample the frame rate of 3D motions.

6. Training Details

6.1. Architecture Configurations

In Tab. 2, we provide detailed architecture configurations
for EgoAgent following the scaling-up strategy of In-
ternLM [5]. To maintain the scaling-up and generaliza-
tion ability, we do not modify the internal modules in In-
ternLM, i.e., we adopt the RMSNorm [8] and 1D RoPE [4].
We show that, without specific modules designed for vision
tasks, EgoAgent can perform well on egocentric vision and
action tasks.

Tab. 3 presents the detailed configuration of the embed-
ding and prediction modules in EgoAgent, including the
image projector (Proj, ), representation head/state prediction
head (MLP;), action projector (Proj,,) and action prediction
head (MLP,). Note that the representation head and the
state prediction head share the same architecture but have
distinct weights.

6.2. Training Configurations

In Tab. 4, we provide the detailed training hyper-parameters
for experiments in the main manuscripts. The training

Table 3. Architecture of the embedding (Proj,, Proj,) and predic-
tion (MLP;, MLP,) modules in EgoAgent. For details on module
connections and functions, please refer to Fig. 2 in the main paper.

Norm & Activation Output Shape
Proj; (Image projector)
Input image - 3x224x224
Conv 2D (16x16) - Embedding dimx 14x 14
MLP; (State prediction head & Representation head)
Input embedding - Embedding dim
Linear GELU 2048
Linear GELU 2048
Linear - 256
Linear - 65536
Proj,, (Action projector)
Input pose sequence - 4x5x17

Conv 2D (5x17) LN, GELU
MLP,, (Action prediction head)

Embedding dimx 1x1

Input embedding -
Linear -

Embedding dimx 1x 1
4x5x17

Table 4. Hyper-parameters for training EgoAgent.

Training Configuration EgoAgent-300M/1B

Training recipe:
optimizer
optimizer momentum

AdamW [3]
By = 0.9, B> = 0.999

Learning hyper-parameters:

base learning rate 6.0E-04
learning rate schedule cosine
base weight decay 0.04
end weight decay 0.4
batch size 1920
training iterations 72,000
learning rate warm-up iterations 1,800
warm-up schedule linear
gradient clip 1.0
data type Float-16
norm epsilon 1.0E-06
EMA hyper-parameters:

momentum 0.996

uses the AdamW optimizer [3] with momentum parameters
B1 = 0.9 and B3 = 0.999. The base learning rate is set at
6 x 10~4, with a cosine learning rate schedule and a base
weight decay of 0.04, transitioning to an end weight decay
of 0.4. A batch size of 1920 is employed for 72, 000 itera-
tions, with 1,800 warm-up iterations using a linear sched-
ule. Gradient clipping is applied at a value of 1.0, and data
is processed in Float-16 precision. Additionally, the expo-
nential moving average (EMA) momentum is set to 0.996.
The normalization epsilon is fixed at 1 x 10~° for stability
in training.
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