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1. Derivations of ELBO
Given the following predictive function:

pθ,ϕ(yt|xt) =

∫
pθ(yt|xt, z)pϕ(z|xt) dz (1)

where z is a latent variable, pϕ(z|xt) is the prior, and
pθ(yt|xt, z) is the segmentation model. Our objective is to
maximize log pθ,ϕ(yt|xt). For computational tractability,
we introduce a variational posterior qφ(z|xt, xs) to approx-
imate the true posterior p(z|xt, xs).

First, we can rewrite the objective function by introduc-
ing qφ(z|xt, xs):

log pθ,ϕ(yt|xt)

= log

∫
pθ(yt|xt, z)pϕ(z|xt) dz

= log

∫
pθ(yt|xt, z)

pϕ(z|xt)

qφ(z|xt, xs)
qφ(z|xt, xs) dz

(2)

Next, we apply Jensen’s Inequality [8], noting that the log
function is concave and obeys:

logE[X] ≥ E[logX]

Thus, we can bring the logarithm outside the integral to
form a lower bound:

log pθ,ϕ(yt|xt)

≥
∫

qφ(z|xt, xs) log

(
pθ(yt|xt, z)

pϕ(z|xt)

qφ(z|xt, xs)

)
dz

(3)
We then decompose the logarithmic term inside the inte-
grand:

log

(
pθ(yt|xt, z)

pϕ(z|xt)

qφ(z|xt, xs)

)
= log pθ(yt|xt, z) + log

pϕ(z|xt)

qφ(z|xt, xs)

(4)

* Indicates equal contribution.
† This work was conducted while I-Hsiang Chen was an intern at Uni-

versity of Washington.

Hence, the lower bound becomes:

log pθ,ϕ(yt|xt) ≥
∫

qφ(z|xt, xs) log pθ(yt|xt, z) dz

−
∫

qφ(z|xt, xs) log
qφ(z|xt, xs)

pϕ(z|xt)
dz

(5)

Therefore, we obtain the final form of the ELBO:

log pθ,ϕ(yt|xt) ≥ Eqφ(z|xt,xs) [log pθ(yt|xt, z)]

−KL [qφ(z|xt, xs)||pϕ(z|xt)] .
(6)

The ELBO demonstrates that maximizing the left-hand side
is equivalent to jointly maximizing the expected log likeli-
hood and minimizing the KL divergence between the varia-
tional posterior and the prior.

2. More Experiments

2.1. Robustness to Image Corruptions
We evaluate PDAF on Cityscapes-C [10, 17], which sim-
ulates real-world degradation by introducing 16 corruption
types across four categories: blur (motion, defocus, glass,
Gaussian), noise (Gaussian, impulse, shot, speckle), digi-
tal distortions (brightness, contrast, saturation, JPEG), and
adverse weather (snow, spattering, fog, frost). We adopt
Mask2Former [3] (with Swin-T and Swin-L [12]) and train
on Cityscapes [5]. As shown in Table 1, PDAF outperforms
previous methods across all corruption types, demonstrat-
ing that our method can adaptively compensate for various
degradation factors by leveraging the Latent Domain Prior
(LDP) as a structured guidance.

2.2. Visualization of Feature Representation
We visualize feature representations under Cityscapes-
C [10, 17] to analyze domain shifts induced by degrada-
tions. We randomly sample 50 images per degradation and
extract features from DeepLabV3Plus [3] (ResNet50 [7]),
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Method backbone Avg Blur Noise Digital Weather
Motion Defoc Glass Gauss Gauss Impul Shot Speck Bright Contr Satur JPEG Snow Spatt Fog Frost

Mask2Former [3]
Swin-T

41.6 51.5 49.4 38.2 46.2 9.6 9.8 13.5 44.4 74.2 60.0 70.0 23.3 23.7 59.4 65.4 27.3
HGFormer [6] 43.9 52.9 53.9 39.0 49.5 12.1 12.3 18.2 46.3 75.0 60.0 71.2 27.2 29.4 60.6 65.0 29.1

PDAF 49.88 56.1 57.7 47.8 55.7 23.2 24.1 30.4 55.1 77.6 62.0 74.5 33.2 30.1 63.8 73.2 33.6
Mask2Former [3]

Swin-L
58.7 63.5 66.6 62.1 62.3 26.2 35.9 33.2 62.9 80.0 72.6 77.3 52.5 50.5 75.3 75.1 43.0

HGFormer [6] 59.4 64.1 67.2 61.5 63.6 27.2 35.7 32.9 63.1 79.9 72.9 78.0 53.6 55.4 75.8 75.5 43.2
PDAF 62.5 64.9 68.3 62.9 66.2 35.6 41.1 45.0 68.3 82.3 73.4 79.3 54.6 56.4 76.6 78.1 46.6

Table 1. Comparison with existing methods evaluated on synthetic Cityscapes-C [10, 17].

(a) DeepLabV3Plus (b) PDAF

Figure 1. Visualization of feature representation based on
PDAF and its segmentation backbone (DeepLabV3Plus [3]).
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Figure 2. Visualization of LDPs under different domains.
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Figure 3. Visualization of dynamic changing maps.

trained on Cityscapes [5]. As shown in Figure 1, degrada-
tions cause significant domain shifts, forming distinct clus-
ters in feature space. In contrast, PDAF effectively reduces
domain shift by leveraging LDP, leading to a more compact
feature distribution. These results indicate that PDAF im-
proves feature alignment, enhancing segmentation robust-
ness against challenging degradations.

2.3. Analysis of LDP
Figure 2 compares LDP maps under fog and snow con-
ditions from the same image, demonstrating distinct spa-
tial patterns associated with domain shifts. Furthermore,
we apply four synthetic degradations to 50 Cityscapes [5]
test images, extract their LDPs, and visualize them with
t-SNE. The resulting clusters are clearly separated by
degradation type, confirming that LDPs effectively encode

Spatial Resolution 1/64 1/32 1/16 1/8 1/4

Avg. of mIoU 48.83 49.10 49.41 49.14 48.90

Table 2. Effect of LDP Spatial Scale

(λtask, λsc, λprior) Setting B M G S Avg.
(0.5, 0.5, 0.1) Adjust Prior 52.99 61.07 48.11 30.58 48.19

(0.5, 0.5, 10.0) 52.85 60.75 47.86 30.40 47.97
(0.5, 0.5, 1.0) Balance 53.50 62.93 50.54 30.68 49.41
(5.0, 0.5, 1.0) Adjust Task 51.98 58.45 46.70 29.33 46.62
(0.5, 5.0, 1.0) 52.75 59.45 47.37 29.81 47.35

Table 3. Ablation study on the coefficient of loss function.
The experiments are conducted using DeepLabV3Plus [2] with
ResNet50 [7], trained on the Cityscapes [5] and evaluated on
BDD-100K (B) [18], Mapillary (M) [13], GTAV (G) [14] and
SYNTHIA (S) [15].

domain-specific variations. As shown in Table 2, we as-
sess LDPs at multiple spatial scales and observe that the
1/16 resolution, matching the backbone’s feature map di-
mensions, achieves the best performance. Note that we fol-
low the same experimental settings as in the ablation study
of the main paper.

2.4. Dynamic Changing Maps of DPE
DPE employs an accelerated diffusion-based optimiza-
tion [16] for efficient and rapid inference. As shown in
the Figure 3, even a single step is sufficient to capture
domain-specific patterns. As the number of steps increases,
the estimated LDP becomes progressively clearer.

2.5. Analysis of Loss Coefficient
The loss coefficients (λtask, λsc, λprior) adjusts the objective
function by balancing task-specific term, semantic consis-
tency and prior regularization. Based on experimental re-
sults, we set the values to (0.5, 0.5, 1.0). As shown in Ta-
ble 3, increasing a specific λ value enhances focus on the
corresponding loss term but distorts the balance between
regularization and segmentation, leading to suboptimal do-
main generalization performance.

2.6. Impact of Pseudo-target Quality
We further leverage DGInStyle [9] for pseudo-target aug-
mentation. The average mIoU improves from 42.85 to



Method Params (M) GFLOPS Time(ms)
DeepLabV3Plus [2] 45.08 278.82 10.01

PDAF 45.43 280.74 11.52

Table 4. Computational analysis of PDAF and its segmentation
network (DeepLabV3Plus [2]) during inference. Inference time
is averaged over 400 trials.

Modeling Variation Avg. of mIoU
w/o Constraint 46.80

Standard Laplace 47.23
Standard Gaussian 47.79

Learned Gaussian (Ours) 49.41

Table 5. Comparison of Different Probabilistic Modeling
Strategies

44.24, confirming that higher-fidelity pseudo-targets en-
hance LDP estimation. In our original experiments, we used
only photometric augmentation to ensure fair comparisons
with baseline methods.

2.7. Computational Efficiency

To investigate the computational efficiency, we adopt
DeepLabV3Plus [2] with a ResNet-50 [7] backbone and
conduct our analysis on an NVIDIA Tesla V100 GPU us-
ing images at 2048 × 1024 resolution. As shown in Ta-
ble 4, PDAF introduces only a marginal increase in parame-
ters and computational overhead while maintaining compa-
rable inference efficiency. Remarkably, our additional mod-
ules require only 1.51 ms, about 13.1% the total, indicat-
ing that overall deployment speed is largely determined by
the chosen backbone. Moreover, the Latent Prior Extractor
(LPE), the Domain Compensation Module (DCM) and the
Diffusion Prior Estimator (DPE) contribute 0.15M, 0.01M
and 0.34M parameters, respectively. Although the LPE and
an additional pre-trained segmentation network are utilized
during training, these modules can be removed during infer-
ence to maintain minimal overhead. In the DPE, each de-
noising step for estimating LDP requires 0.26 ms and 0.142
GFLOPs, and we adopt 4 steps by default. Notably, since
PDAF estimates the LDP rather than an entire feature rep-
resentation, allowing it remains efficient while adapting to
arbitrary target domains.

2.8. Analysis of Probabilistic Modeling

To analyze the impact of prior assumptions, we compare
four types of probabilistic modeling: no prior constraint,
a standard Laplace prior, a standard Gaussian prior and a
learned Gaussian prior. As shown in Table 5, the learned
Gaussian prior achieves the highest overall performance.

2.9. Discussion of Failure Cases
Despite PDAF’s ability to mitigate domain shift through la-
tent domain prior modeling, it still yields limited gains un-
der severe class imbalance, similar to other DGSS methods.
For instance, in the Cityscapes [5] training set, the “terrain”
and “train” categories account for only 0.83% and 0.11% of
annotated pixels. On the BDD dataset, their absolute mIoU
gains over the backbone (DeepLabV3Plus [2]) are only 1.71
and 0.27, respectively, compared with an average per-class
improvement of 8.54. This indicates that even with PDAF,
the backbone struggles to improve performance on severely
underrepresented classes.

2.10. Qualitative Evaluation
We provide an additional qualitative comparison with other
CNN-based methods that adopt DeepLabV3Plus [2] with
ResNet50 [7]. All of these methods are trained on GTAV
(G) [14] and evaluated on BDD-100K (B) [18] and Map-
illary (M) [13]. As illustrated in Figure 4 and Figure 5,
PDAF achieves comprehensive improvements in real-world
scenarios, mitigating domain shifts from varying illumina-
tion, regional discrepancies and style differences. These re-
sults highlight the effectiveness of modeling LDP, provid-
ing structured guidance to perform robust feature alignment
across diverse target environments.



Input Baseline [2] ISW [4] SHADE [19] WildNet [11] BlindNet [1] PDAF Ground Truth

Figure 4. Qualitative comparison with DGSS methods trained on GTAV (G) [14] and evaluated on BDD-100K (B) [18].

Input Baseline [2] ISW [4] SHADE [19] WildNet [11] BlindNet [1] PDAF Ground Truth

Figure 5. Qualitative comparison with DGSS methods trained on GTAV (G) [14] and evaluated on Mapillary (M) [13].
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