A. Feasibility and Convergence Analysis

Proposition 1. The merging function maintains feasibility,
i.e., the merged model stays in the convex hull M.

Proof. We can rewrite the merging function as:
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Since 0, € M and 5; € M forall j = 1,...,k, and
{A; }?:1 are obtained through projection onto the simplex
(i.e., 2521 A7 =1land A} > 0), we have 0iy1 € M. This
follows from the convexity of M: a convex combination of
points in a convex set remains in the set. O

Theorem 1 (Convergence Rate of Soft FW). Consider
£(6) be L-smooth over M, which has two constants:
diam := maxg, g,em |61 — 62| be the diameter of M,
and subopt := £(fy) — minge a1 £(0) be the global subop-
timality. Consider the soft FW algorithm which introduces
the following changes to Algorithm ??:

1. {5;}%_, is the top-k vertices of LMO.

2. {NHEL) = argminyear €00 + 351 (55 — 0)).

3. Opp1 = 0: + Z?:l Ai(85 — 0r).
‘We have:
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Proof. We first define g as the top-k FW gap of the soft
FW algorithm:
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Comparing to the full FW gap
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we have:

95 > g

because the top-k FW gap subsumes the original FW gap
by setting Ay = 1and \; = 0 for j = 2,..., k. Intuitively,
selecting multiple descent directions and optimizing their
combination always gives at least as much descent as the
single best direction. From the Lipschitz continuity of £(6),
we have:
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Using the update rule 6;,1 = 6; + 2?21 Ni(85 — 04), we

have:
(VE(0;), 041 — 0r) = —g} .

Therefore,
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Since 6441 is a convex combination of §; and 5;, we have:
||0t+1 - 9t||2 S diamZ.

Hence,
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Summing overt = 0,...,T — 1, we have:
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Therefore,
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The same result holds for g; by the definition of gF. O

This convergence proof for non-convex objective func-
tions is based on the proof given by [16]. Due to the soft
LMO, we obtain a better convergence rate O(%) over the
vanilla rate O(ﬁ) with a price to solve a relatively more
expensive iteration to obtain the optimal coefficients. This
might result in a longer total time, but it is worthy of a so-

lution to the problem of model merging.

B. Data Efficiency

As illustrated in Figure 1, FW-Merging outperforms all
other model merging methods in terms of performance for
the language benchmark. Its performance also surpasses
that of traditional MTL while using less training data.

C. Experiment Details
C.1. Benchmarks

Discriminative Tasks. Following previous research [17],
10% of the training split is used as validation split, while
the original validation set is used as test set. We fine-tuned
8 RoBERTa on 8 tasks form the GLUE benchmark [31]:
QNLI, COLA, STS-B, QQP, SST-2, MRPC, MNLI, RTE.
For the evaluation benchmark, we use MNLI, QNLI, QQP,
and RTE.
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Figure 1. Performance vs. #Data Samples.

Generative Tasks. We collected the following fine-tuned
LLaMAZ2-7B checkpoints from Hugging Face:

 Code Generation'

o Medical QA”

+ News Summarization®

» Commonsense Reasoning*

» Machine Translation’

* Natural Language Understanding®

For evaluation, we used the first 1,000 samples from
CNN/DM summarization [20], the full test set of Pub-
MedQA [13], and HumanEval [3]. Performance was mea-
sured using ROUGE scores for summarization, accuracy for
medical QA, and pass@]1 accuracy for code generation.

]h:tpsz / / huggingface . co/arnavgrg/ codealpaca —
glora

2https : / / huggingface . co / SanjanaR0l / medical -
dialogue-summary-llama2-7b-peft-glora

3h:tps: / /huggingface . co/ernlavr/llama2_ 7bn -
xsum-cnn-lora—-adapter

“https://huggingface.co/Styxxxx/1llama2_7b_lora-
piga

Shttps://huggingface.co/Styxxxx/llama2_7b_lora-
wmt1l6 _translate _roen, https://huggingface . co/

Styxxxx / 1lama2 _ 7b _ lora - wmtl6 _ translate _ csen,
https://huggingface.co/Styxxxx/llama2_7b_lora

wmtl6 _translate _deen, https :/ /huggingface . co/
Styxxxx / 1lama2 _ 7b _ lora — wmtl6 _ translate _ fien,
https://huggingface.co/Styxxxx/llama2_7b_lora-

wmt1l6 _translate _ruen, https:/ /huggingface . co/
Styxxxx/llama2_7b_lora-wmtl6_translate_tren
bhttps://huggingface.co/Styxxxx/1lama2_7b_lora-
wnli, https://huggingface.co/Styxxxx/llama2_7b_
lora—-sst2, https://huggingface.co/Styxxxx/llama2_
7b_lora-snli, https://huggingface . co/ Styxxxx /
llama2 _ 7b _ lora - rte, https :/ /huggingface . co/

Styxxxx/llama2_7b_lora—-qgnli, https://huggingface.
co/Styxxxx/llama2_7b_lora-cola

Vision Tasks. We use models fine-tuned on the
same 20 tasks as [32]: KMNIST [6], EMNIST [§8],
SVHN [21], GTSRB [26], FER2013 [10], DTD [5],
EuroSAT [11], MNIST [9], RenderedSST2 [24, 25],
Cars [14], PCAM [30], RESISC45 [4], FashionM-
NIST [33], SUN397 [34], CIFAR100 [15], Flow-
ers102 [22], Foodl01 [1], OxfordIllITPet [23], CI-
FAR10 [15], STL10 [7].

C.2. Baselines

¢ Pre-trained: Employs a pre-trained model for each task
without adapting it to the downstream tasks.

¢ Individual: Fine-tunes distinct models for each task, pro-
viding the performance upperbound for task-specific per-
formance.

* Traditional MTL: Fine-tunes a single model on all tasks,
providing a baseline for multi-task learning.

* Weight Averaging [12]: Averages the weights of sepa-
rately fine-tuned models for different tasks, serving as a
simple baseline.

e Task Arithmetic [19]: Creates a multi-task vector by
adding individual task vectors, which are scaled by a co-
efficient (\) and incorporated into the pre-trained model’s
parameters.

* Fisher Merging [18]: Uses the Fisher information matrix
to determine the importance of model parameters, pre-
serving crucial parameters for each task.

* Ties-Merging [35]: Merges models by applying tech-
niques like pruning, parameter sign determination, and
separate merging to generate a merged task vector (7),
which is added to the original model’s parameters with a
scaling factor (\) tuned on a validation set.

* AdaMerging [36]: Adapts merging coefficients at either
the task or layer level by minimizing entropy over un-
labeled test data, using this as a surrogate objective for
model merging.

* Concrete Merging [28]: Utilizes a meta-learning frame-
work to generate a concrete mask that mitigates task in-
terference during the merging process.

* Representation Surgery [37]: Aligns the representation
of the merged model with those of the individual mod-
els while adjusting biases to ensure compatibility across
tasks.

We used Fusion Bench [29] for evaluation of the vi-
sion tasks. We follow the experiment setup provided there.
AdaMerging is run with the same setup as detailed in their
paper, with a learning rate of 0.001, momentum values of
(0.9, 0.999), a batch size of 16, and 500 iterations. Surgery
is applied to the merged model from AdaMerging.

C.3. Implementations

On language benchmarks, with the initial solution being the
merged model from task arithmetic, and FWy 5.4 is run for



10 iterations. On vision tasks, the initial solution is the
merged model from AdaMerging, and FWy,,q runs for 3
iterations. For vision benchmarks, FWg¢¢ is run for 15 it-
erations with the pre-trained model as the initial solution.

For the discriminative language benchmark, 100 data
samples from each of MNLI, QNLI, QQP, and RTE are
randomly selected as calibration datasets. For generative
language tasks, 100 samples are randomly drawn from the
training splits of CNN/DM [20], CodeAlpaca-20k [2], and
PubMedQA [13]. For vision tasks, training samples are ran-
domly drawn from the training splits of SUN397 [27], Stan-
ford Cars [14], GTSRB [26], and DTD [5].

C.4. Scaling Experiment Setups

For scaling experiments with irrelevant models, we evalu-
ate performance on SUN397 [27], Stanford Cars [14], GT-
SRB [26], and DTD [5]. The irrelevant models consist of
the vision models listed in Appendix C.1, excluding those
fine-tuned on these four tasks. For scaling experiments
with relevant models, we use all 20 vision tasks as evalu-
ation benchmarks, progressively adding the corresponding
fine-tuned models to the merging pool. We employ FWgo ¢t
for these scaling experiments. To ensure a fair compari-
son, FW-Merging optimizes the merging coefficients us-
ing entropy loss on test samples, similar to Adamerging.
Adamerging is run for 300 iterations in experiments with
irrelevant models and 200 iterations in those with relevant
models.
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