
A. Dataset Details
A.1. Training Dataset
We use the ForenSynths [54] training set for our experi-
ments. The details of the dataset are provided in Table 6.
For different data volume divisions, we randomly extract
approximately 1%, 4%, 20%, and 50% of the data from the
original training set.

Volume Total Size Classes Neg%

1% 1,600 car, cat, chair, horse 50%
4% 6,400 car, cat, chair, horse 50%
20% 28,800 car, cat, chair, horse 50%
50% 72,000 car, cat, chair, horse 50%
100% 144,024 car, cat, chair, horse 50%

Table 6. Statistics of Training Dataset. We report the number of
images in each data split, the class distribution (all classes share
the total data volume), and the proportion of negative samples.

A.2. Evaluation Datasets
UniversalFakeDetect [39]. The dataset is a large-scale
benchmark designed to evaluate the generalization capabil-
ity of forgery detection models across different generative
techniques. It consists of image subsets generated by 19
different generative models, including both GAN-based and
diffusion-based methods. Each subset contains both real
and fake images, with some subsets further divided based
on image classes. The details are shown in Table 7.

Generative Models Size Class Count Neg%

ProGAN 8,000 20 50%
CycleGAN 2,642 6 50%
BigGAN 4,000 N/A 50%
StyleGAN 11,982 3 50%
GauGAN 10,000 N/A 50%
StarGAN 3,998 N/A 50%
Deepfakes 5,405 N/A 49.9%
SITD 360 N/A 50%
SAN 438 N/A 50%
CRN 12,764 N/A 50%
IMLE 12,764 N/A 50%
Guided 2,000 N/A 50%
LDM 200 steps 3,000 N/A 33.3%
LDM 200 w/CFG 3,000 N/A 33.3%
LDM 100 steps 3,000 N/A 33.3%
Glide-100-27 3,000 N/A 33.3%
Glide-50-27 3,000 N/A 33.3%
Glide-100-10 3,000 N/A 33.3%
DALL-E 3,000 N/A 33.3%

Table 7. Statistics of the UniversalFakeDetect Dataset. We report
the size of each subset, the number of classes (N/A indicates no
class split), and the proportion of negative samples.

WSGM
count

WSGM
reduction factor Avg.Acc.(%) Avg.AP.(%)

4 2 94.42 98.81
4 4 91.12 98.31
4 8 92.07 98.15

8 2 93.61 98.55
8 4 94.92 98.78
8 8 91.99 98.31

12 2 93.24 98.23
12 4 94.99 98.83
12 8 93.86 98.35

24 2 93.11 98.16
24 4 94.74 98.79
24 8 90.12 97.37

Table 8. Ablation Experiment Results on WSGM Count and Re-
duction Factor.

B. Perturbation Details
Noise: Gaussian noise is added to the input image, with the
variance randomly sampled from a uniform distribution in
the range [5.0, 20.0]. This variance determines the noise in-
tensity, introducing random pixel variations while preserv-
ing the original image dimensions.
Blurring: A Gaussian blur is applied using a kernel size
randomly selected from 3, 5, 7, 9. Larger kernels result in
stronger blurring effects.
Compression: JPEG compression is introduced by select-
ing a random quality factor between 10 and 75. The image
is then encoded in JPEG format with the chosen quality, in-
ducing lossy compression artifacts.
Cropping: A random crop is performed by selecting a
cropping ratio between 5% and 20% for both x and y di-
mensions. The cropped region is then resized back to the
original dimensions using bicubic interpolation.

C. Additional Experimental results
C.1. Ablation Studies
Impact of WSGM Block Count and Bottleneck Dimen-
sion. To evaluate the impact of different WSGM counts and
their bottleneck dimension, we conduct experiments to ana-
lyze their effects on detection performance. The results are
presented in Table 8. The experimental results show that
different WSGM counts and their reduction factors have
some impact on ACC, but the effect on AP is minimal. Our

FAFormer Layers Avg.Acc.(%) Avg.AP.(%)

1 94.63 (0.11↑) 98.72 (0.60↑)
2 94.99 (0.47↑) 98.83 (0.71↑)
4 94.91 (0.39↑) 99.00 (0.88↑)
6 94.78 (0.26↑) 98.81 (0.69↑)
8 94.94 (0.42↑) 98.86 (0.74↑)

Table 9. Ablation Experiment Results on FAFormer Layers.
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Figure 6. Average ACC and AP on UniversalFakeDetect across
different bottleneck dimensions. The reduction factor defines the
bottleneck compression ratio (mid dim = input dim / factor); 0.25
and 0.5 indicate wider bottlenecks (×2, ×4), while ”w/o” refers to
the removal of the bottleneck.

method achieves the best performance when the WSGM
count is set to 12 and the reduction factor is 4. Additionally,
the reduction factor should not be too large, as smaller inter-
mediate layer dimensions fail to effectively guide the frozen
model in focusing on forgery-specific features. Specifically,
the bottleneck allows the frozen model to focus on forgery-
related information within the general-purpose features it
extracts during training (Forgery Focus section in Figure 3).
The reduction factor impacts the degree of this focus: if it
is too small (wider intermediate dimension), the model may
overfit to the unique patterns of training images; if it is too
large (narrower intermediate dimension), important forgery
cues may be lost. To validate this, we conducted additional
experiments based on the setting with WSGM count = 12,
as shown in Table 8 (WSGM count refers to the number
of modules, i.e., 12 for a 24-layer ViT, with each sharing
weights across 2 blocks). The results demonstrate that both
excessively large and small reduction factors lead to perfor-
mance degradation, including expanding the intermediate
dimension.

Impact of Different FAFormer Layers. We investigate
the effect of varying the number of FAFormer layers on our
approach. The results are presented in Table 9. The exper-

imental results show that FAFormer achieves optimal per-
formance when the number of layers is set to 2. Overall,
the impact of different layer configurations on FAFormer’s
performance is minimal.

Hyperparameter
UniversalFakeDetect

Value
GenImage

Value

train data count 1,600 400
train classes car, cat, chair, horse N/A

stage1 batch size 32 16
stage1 epochs 50 10
stage1 learning rate 5× 10−5 [1× 10−3, 1× 10−4]
stage1 lr decay step 2 3
stage1 lr decay factor 0.7 0.7
WSGM count 12 4, 8, 12
WSGM reduction factor 4 2, 4, 8

stage2 batch size 16 16
stage2 epochs 10 5
stage2 learning rate 2× 10−6 1× 10−5

stage2 lr decay step 2 3
stage2 lr decay factor 0.7 0.7
FAFormer layers 2 2
FAFormer reduction factor 1 1
FAFormer head 2, 4 2, 4

Table 11. Hyperparameters.

C.2. Comparative Experiments
To further validate the effectiveness of our method, we
conducted additional comparative experiments on GenIm-
age [59]. GenImage comprises eight subsets, each contain-
ing fake images generated by a different model: AMD [15],
BigGAN [4], GLIDE [38], Midjourney [1], Stable Diffu-
sion V1.4 [45], Stable Diffusion V1.5 [45], VQDM [19],
and Wukong [2]. We used the SDv1.4 subset for training.

As shown in Table 10, our method outperforms all ex-
isting detection approaches, achieving state-of-the-art per-
formance with an average ACC of 97.6%. Notably, it im-
proves the average ACC by 8.8% over the baseline UniFD

Methods Testing Subset Avg. Acc.(%)
ADM BigGAN GLIDE MidJourney SDV1.4 SDV1.5 VQDM Wukong

ResNet-50 [20] 53.5 52.0 61.9 54.9 99.9 99.7 56.6 98.2 72.1
DeiT-S [51] 53.5 52.0 61.9 54.9 99.9 99.7 56.6 98.2 72.1
Swin-T [34] 49.8 57.6 67.6 62.1 99.9 99.8 62.3 99.1 74.8
CNN-Spot [54] 50.1 46.8 39.8 52.8 96.3 95.9 53.4 78.6 64.2
Spec [56] 49.7 49.8 49.8 52.0 99.4 99.2 55.6 94.8 68.8
F3Net [42] 49.9 49.9 50.0 50.1 99.9 99.9 49.9 99.9 68.7
GramNet [33] 50.3 51.7 54.6 54.2 99.2 99.1 50.8 98.9 69.9
UniFD [39] 71.9 90.5 85.4 93.9 96.4 96.2 81.6 94.3 88.8
NPR [50] 76.9 84.2 89.8 81.0 98.2 97.9 84.1 96.9 88.6
FreqNet [49] 66.8 81.4 86.5 89.6 98.8 98.6 75.8 97.3 86.8
FatFormer [32] 75.9 55.8 88.0 92.7 100.0 99.9 98.8 99.9 88.9
C2P-CLIP [48] 96.4 98.7 99.0 88.2 90.9 97.9 96.5 98.8 95.8

ForgeLens 94.0 93.8 99.5 97.4 99.7 99.5 97.8 99.0 97.6

Table 10. Comparison of Average Accuracy (Avg. ACC) between our method and other generated image detectors on the GenImage test
sets. Each model is trained on the SDv1.4 subset and evaluated across all test sets. Accuracy is averaged over eight training cases per test
set, with the top-performing results highlighted in bold.
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Figure 7. Class Activation Map (CAM) visualization of features extracted by the frozen CLIP-ViT and ForgeLens on GANs data.
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Figure 8. Class Activation Map (CAM) visualization of features extracted by the frozen CLIP-ViT and ForgeLens on diffusion model data.

and 1.8% over the recent C2P-CLIP method. These results
further demonstrate the effectiveness of our approach and
its strong generalization in detecting forgery images from
recent diffusion models.

D. Implementation Hyperparameter Details

To facilitate the reproduction of our best results on the
UniversalFakeDetect and GenImage datasets, we provide a
complete list of all hyperparameters used during training, as
shown in Table 11. For the GenImage dataset, the training
process exhibits some fluctuations; therefore, we provide a
range of values for certain hyperparameters.

E. Additional Class Activation Map Visualiza-
tion

To more comprehensively validate the effectiveness of fo-
cusing on forgery-specific features, we conducted extensive
CAM visualizations on images generated by both GANs
and Diffusion models, as shown in Figures 7 and 8. Com-
pared to the general-purpose features extracted using only

the frozen base model CLIP-ViT, the forgery-focused fea-
tures extracted by ForgeLens exhibit stronger activations
and greater attention to manipulated regions, highlighting
its effectiveness in capturing forgery-related patterns.
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