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This supplementary material provides more details and
results that are not included in the main paper due to space
limitations. The contents are organized as follows:

e Section A formulates how to analyze the frequency

response of the attention mechanism.

e Section B provides a mathematical proof for attention
as low-pass filters.

e Section C describes the details of an simple implemen-
tation for the proposed Attention Inversion.

e Section D provides more details about the experimen-
tal settings.

e Section E introduces details of the ablation study re-
sults to evaluate each module, parameter, and time
complexity.

e Section F shows more details for effective rank analy-
sis.

e Section G shows more details and results for feature
similarity analysis.

e Section H provides more visualized results.

A. Frequency Response Analysis for Attention

Understanding the inner workings of attention mecha-
nisms is crucial for interpreting their role in enhancing fea-
ture representations. In this section, we propose a frequency
response analysis framework that quantifies how attention
modulates the frequency content of input features. We first
introduce how to calculate the global frequency response
of attention, and then we describe how to calculate the lo-
cal frequency response. The visualized frequency response
analysis can be found in Section H.

A.1. Global Frequency Response.

Following [16], we regard attention as a system and de-
fine the attention frequency response as the ratio between
the frequency spectrum of the output and that of the input.

Let V. € RHXWXC denote an input value map and
Y € RIXWXC pe the corresponding output after apply-
ing an attention module. We analyze the frequency content
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of these feature maps using the Discrete Fourier Transform
(DFT). For each channel ¢, consider the two-dimensional
value map V.(p,q) where 0 < p < Hand 0 < g < W.
The DFT of V., Y. are defined as:
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where (u, v) are the frequency coordinates with 0 < u < H
and 0 < v < W, and j = /—1 is the imaginary unit.

After obtaining the Fourier spectra, we define the atten-
tion frequency response R(u, v) as:

F(Y)(u, )|
v
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R = F ) o)l
Here, (V) (u,v) and F(Y)(u,v) denote the Fourier trans-
form of the input and output features respectively, com-
puted either per-channel or as an aggregated spectrum. A
value of R(u,v) > 1 indicates an amplification of the
frequency component (u,v) by the attention mechanism,
whereas R(u,v) < 1 suggests a suppression.
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A.2. Local Frequency Response.

It is non-trival to obtain the local frequency response for
each pixel in the feature map output by attention mecha-
nism. To achieve this, we firstly view the attention mecha-
nism as dynamic convolution, as shown in Figure 1, and the
obtain the local frequency response by convolution theory.
Standard Attention Mechanism. Given an input tensor
X € RIXWXC gelf-attention derives queries Q, keys K,
and values V via linear projections:

Q=XW,, K=XWg, V=XW,, (@3

where W, W, Wy, are learnable weights. The atten-
tion output is computed as:

T
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Attention(Q, K, V) = softmax ( ) VvV, &
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Figure 1. An illustration of interpreting attention as spatial dy-
namic convolution. The top row shows the conventional attention
operation, where the attention matrix A = QK is computed
from query Q and key K. The bottom row demonstrates how re-
shaping A into position-specific kernels allows it to be viewed as a
set of dynamic filters convolving with the value map V. This per-
spective unifies attention and dynamic convolution under a single
framework.

Dynamic Convolution. Traditional convolution applies
fixed kernels W to local neighborhoods. In contrast, dy-
namic convolution [7,9,23] generates input-dependent ker-
nels W, , at each spatial position (p, ¢):

Y (p.q) = (Wp,q x X)(p,q). 5)

In this formulation, X € RZ*WXC denotes the input fea-
ture map with height H, width W, and C channels, while
Y (p, q) represents the output feature at position (p, q). The
symbol * indicates the convolution operation, and W, , is
the dynamic kernel specifically generated for the spatial lo-
cation (p,q). This dynamic kernel is applied over a local
neighborhood of X to produce the corresponding output,
allowing the convolution process to adapt based on the in-
put content.

Attention Weights as Dynamic Kernels. The attention

matrix A = softmax (Q—\Ig) encodes pairwise affinity

scores. By reshaping A € REWXHW into spatially local-
ized grids (i.e., H x W, where each grid contains a kernel
of size H x W), we reinterpret A as a set of dynamic con-
volution kernels:
Wﬁq = Reshape (A, ;) € RF*W. (6)

Here, A, 4 corresponds to the attention weights for the posi-
tion (p, ¢), and the reshaping enforces a convolutional struc-
ture.

The attention output is computed by aggregating values
V with the dynamic kernels W, ,:

Y (p,q) = (Wy* V)(p.q). (7

This mirrors dynamic convolution.

Convolution Theorem. We can obtain the frequency re-
sponse at location (p, q) as follows:

|7 (Wi * V) (u,0)]
IFV)(w,0)] 7

where W;: o denotes the attention-based dynamic kernel at
location (p, ¢), V is the value feature map, F(-) represents
the Fourier transform, (u, v) are the frequency coordinates,
and € is a small constant for numerical stability.

According to the convolution theorem [3], the spatial
convolution of W;" 4 and V corresponds to an element-wise
multiplication of their frequency representations:

Rp,q (uv v) =

®)

]:(Wz?,q * V)(U,, U) = ‘F(Wﬁq)(u7 U) . ‘F(V)(u, U). (9)

Thus, we can express the local frequency response at (p, q)
as:

[F(W)(u,0) - F(V)(u,v)|
\}'(V)(U»v)l (10)
| F (W) ()]

Ry q(u,v) =

Therefore, the local frequency response corresponds to the
magnitude of the frequency spectrum of the local linear fil-
ter W;i o Obtained from attention matrix A.

B. Attention as Low-Pass Filters

Given W4 € R¥*W represents a reshaped filter derived
from the softmax normalized attention matrix, it is evident
that the filter satisfies the properties:

H—
0 < WA(m,1) <1, Z Z =1.

(11
We can determine its frequency response by applying the
Discrete Fourier Transform (DFT). The two-dimensional
discrete Fourier transform (DFT) of W4 is defined as:

H—-1W-1
FWH)(w0) = 37 > WA, e 29U H),
m=0 [=0
(12)
where v = 0,1,...,H —landv =0,1,...,W — 1. This

transform provides the frequency response of the filter W4
across different spatial frequencies v and v.

Lowest Frequency. For the lowest zero-frequency (DC)
component, we have:



This follows directly from the softmax normalization prop-
erty. It means that the filters in the softmax-normalized
attention matrix preserve the magnitude of the lowest fre-
quency component.

High Frequency. Parsevals theorem [1,21] states that the
total energy in the spatial domain equals the total energy in
the frequency domain:

H-1W-1
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Since W4 is a probability distribution, by Jensens in-
equality we have:

H—-1W-1 ) H—1W-1
T3 (WA, 0) (Z 3 wA<m,l>> 2,
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15)
Thus, it follows that:
H—-1W-1 )
S |FWA u,v)|T < HW. (16)
u=0 v=0
Since the DC component satisfies:
| F(W4)(0,0)] = 1, (7

we obtain:
> FEWH@) < HW -1 o
(u,0)#(0,0)

This implies that for at least some (u,v) # (0,0) we
must have:
| F(WH) (u,v)| < 1. (19)

For any (u, v), we consider the magnitude of the Fourier
transform, by the triangle inequality, we have

H-1W-1
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= WA(m, 1) -1

(20)

Equality in the triangle inequality holds if and only if all
the complex numbers being summed share the same phase.
In our case, this means that

e 2 (H W) = ¢ for all (m, 1) with WA (m, 1) > 0,
21
for some constant § € R. This condition can be rewritten as

um vl

for every (m, () in the sumport of W4,

For (u,v) # (0,0), the phases —27 (%2 + 2L} vary
with p and ¢ unless the sumport of W4 is a singleton (i.e.,
all the probability mass is concentrated at a single point).
In typical settings with softmax-normalized attention, W
is non-degenerate and has strictly positive values over in-
dices. Hence, the exponential terms are not all aligned, and
the convex combination lies strictly inside the unit circle.
Therefore, we have

| F(WH)(u,v)| <1 forall (u,v) # (0,0).  (23)

It means that the filters in the softmax-normalized atten-
tion matrix attenuate the magnitude of highier frequency
|(u,v)| > (0,0) component.

Conclusion. From the above derivation, we conclude:

| F(W)(u
|fWA( u,

v)| = Lif (u,v) = (0,0)
v)| < Lif (u,v) # (0,0)

Therefore, the filters in the softmax-normalized attention
matrix preserve the lowest frequency component, attenuate
high-frequency components, and thus behave as a low-pass
filter.

Now, consider a simple model with L layers of pure self-
attention. Let F (X () denote the Fourier transformed spec-
trum of the feature map at layer i, and let (W 4:(!)) denote
the frequency response of the attention matrix at the same
layer. The transformation across layers follows the recur-
sive relation:

(24)

L

[T7WAO) (u,0) - F(XO)(u,0). (25)
=1

Since |F(W4())(u,v)| < 1 for all nonzero frequencies
(u,v) # (070), we observe that:

FXE (u,v) =

lim H‘J—' (WO (v ’—0 V(u,v) # (0,0).  (26)

L—o0

This means that, all high-frequency components are ex-
ponentially suppressed with layers for each location, leav-
ing only the lowest frequency component (0,0) dominant.
Consequently, the model suffers from frequency vanishing,
where fine-grained details and textures are lost, impairing
the model to capture crucial information for dense predic-
tion vision tasks.
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Figure 2. Illustration of inverting linear filters in the attention matrix. The identity filter has a all-pass frequency response. The linear
filters in attention suppress high-frequency components, resulting in a low-pass effect. By subtracting these filters from the identity filter,
we obtain their inverted counterparts, which emphasize high-frequency components. Combining the original and inverted filters with
modulation weights leads to a flexible frequency response, where different spatial structures can be selectively enhanced or suppressed.
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Figure 3. Illustration of stacking Attlnv layers to obtain more complex filters. We illustrate how to use two layers of simple combinations
of low-pass and high-pass filters to obtain more complex band-pass and band-stop filters. By stacking deeper layers in this way, a more

complex frequency response can be achieved.

C. Implementation of Attention Invertion

Here, we introduce an efficient and simple way to imple-

ment Attention Inversion.
Inverting Filters in Attention. In Section A, we inter-
preted attention as a spatial dynamic convolution (illustrated
in Figure 1). Building on that, we consider the attention ma-
trix A as a set of H x W linear filters [ 18], where each spa-
tial location (p, ¢) corresponds to a filter A, , € RF*W,

Mathematically, inverting the filters in the attention ma-
trix is expressed as:

Apg=F 1 (Iy = F(Apy)) 27
where F and F~! denote the Fourier Transform and its in-
verse, respectively. Iy is an all-pass filter in the frequency
domain, with real part 1 and imaginary part 0. This inver-
sion ensures that the high-pass filter A has a frequency re-
sponse complementary to A, .

In the spatial domain, the all-pass filter corresponds to
the identity filter, where the center value is 1, and all other
values are zero, as shown in Figure 2. Thus, the inversion
can be simplified to:

Apyq =I- Ap,q- (28)

Figure 2 illustrates this process. The identity filter ex-
hibits an all-pass frequency response, while attention filters

suppress high-frequency components, resulting in a low-
pass effect. By subtracting these filters from the identity
filter, we obtain their inverted counterparts, which empha-
size high-frequency components. Combining the original
and inverted filters with modulation weights allows us to
flexibly adjust the frequency response, enabling selective
enhancement or suppression of spatial structures:

Ap,q = S(pa q) - Ap,q + S(p, Q) : Ap,qa (29)

where S and S are the combination weights obtained via
a convolutional layer. This spatially adaptive combination
dynamically balances low- and high-pass filtering, ensuring
that each region retains the most relevant frequency com-
ponents. When cascading L such layers, the frequency re-
sponse across L layers can be expressed as:

X(L) ﬁ [S(l)]: A(

=1

)+ SOFAN] FX). 30y

This recursive composition of these hybrid filters expands
into L? distinct weighted combinations of low- and high-
pass operations, enabling flexible amplification or suppres-
sion of specific frequency bands. As shown in Figure 3, we
illustrate how to use two layers of simple combinations of
low-pass and high-pass filters to obtain more complex band-
pass and band-stop filters. By stacking deeper layers in this
way, a more complex frequency response can be achieved.



In contrast, stacking L standard attention layers monoton-
ically attenuates high frequencies, leading to exponential
vanishing as Equation (26) described. Attlnvs quadratic
complexity in frequency operations preserves both global
structures (via low-pass) and fine details (via high-pass),
overcoming the spectral limitations of attention mechanism.
Reformulating AttInv with the Identity Matrix. To fur-
ther simplify implementation, we introduce E € RH*W
an identity matrix with 1 on the diagonal and O elsewhere.
The high-pass filter can then be expressed as:

A=E-A. (31)

Substituting this into the dynamic combination from
Eq. (29), we get the reformulated Attlnv output:

X' =AxX
=(S-A+S-A)xX
=§ - AxX+S - AxX (32)
=S - AxX+S (E-A)xX
=S AxX+S§S (X-AxX).

where X’ is the output, and A x X can be regarded as the
low-pass filtered low-frequency component of X due to the
low-pass filtering effect of attention. Thus, the residual X —
A x X can be regarded as the high-pass filtered result.
Simple Implementation of AttInv. On the basis of analy-
sis above, the implementation of Attlnv involves a straight-
forward two-step process: obtaining the high-pass filtered
results and dynamically combining frequency components.

First, given an input feature X, we compute the high-
pass filtered output by subtracting the attention-filtered fea-
ture from the original feature:

th:X—AXX, (33)

where A x X is the output of the attention matrix multiplied
by the input, which extracts the low-frequency components
of X. This subtraction removes the low-frequency compo-
nents, preserving the high-frequency details.

Next, we use a spatially varying modulation mechanism
to balance low- and high-frequency components. We learn
two spatially dynamic coefficients S,S € R¥*W  which
control the contribution of low- and high-frequency compo-
nents at each spatial location:

X' =S -AxX+8S- X, (34)

where the modulation weights S and S are generated via a
convolutional layer conditioned on X.

This formulation allows the model to selectively empha-
size different frequency components based on local spatial
structures, ensuring effective preservation of fine-grained
details while maintaining smoothness in homogeneous re-
gions.

D. Experimental Settings

Datasets and Metrics. We evaluate our methods on three
challenging benchmarks: ADE20K [22], and COCO [12],
and DOTA [20].

ADE20K. ADE20K [22] is a more diverse semantic seg-
mentation dataset containing 150 categories. It includes
20,210 training images, 2,000 validation images, and 3,352
test images. This dataset covers a wide range of scenes,
making it ideal for evaluating the generalizability of seg-
mentation models.

COCO. For object detection, instance segmentation,
and panoptic segmentation tasks, we use the COCO
dataset [12], a standard benchmark in these domains.
COCO provides a comprehensive set of annotations for ob-
ject instances and is widely used to evaluate model perfor-
mance on detection and segmentation tasks.

DOTA. For remote sensing object detection, we use the
DOTA-v1.0 [20] dataset, which consists of 2,806 remote
sensing images. It contains 188,282 instances across 15 cat-
egories: Plane (PL), Baseball diamond (BD), Bridge (BR),
Ground track field (GTF), Small vehicle (SV), Large ve-
hicle (LV), Ship (SH), Tennis court (TC), Basketball court
(BCO), Storage tank (ST), Soccer-ball field (SBF), Round-
about (RA), Harbor (HA), Swimming pool (SP), and Heli-
copter (HC).

Maetrics. For evaluation metrics, we use mean Intersection
over Union (mloU) to assess semantic segmentation per-
formance. For object detection and instance segmentation,
we use Average Precision (AP), which measures the ac-
curacy of detection models across different categories and
scales. For panoptic segmentation, we use Panoptic Qual-
ity (PQ) [8]. The GLOPS are measured on an image size
of 512 x 2048, except for SegFormer, which uses an image
size of 512 x 512.

Implementation Details. For Mask DINO [10], we adhere
to the original training protocols [10], with the exception
of setting the batch size to 8§ instead of 16. For UPerNet
with ViT [5], all models are trained for 160k iterations us-
ing AdamW [13] with a batch size of 16. On COCO, we
follow standard practices [4, 15, 19] for training object de-
tection and instance segmentation models. All models are
trained for 12 epochs using the 1x schedule, ensuring com-
patibility with standard benchmarks. For models that do
not adopt the standard self-attention mechanism, such as
LSKNet [11], we bypass the Attlnv module of FDAM when
combining it. The results of the competitors in the tables are
copied from their original papers and the widely used stan-
dard benchmark codebase, mmsegmentation.

E. Ablation Study

In this section, we conduct an ablation study to inves-
tigate the impact of each component in our Frequency-



Table 1. Ablation studies of our Frequency Dynamic Attention
Modulation (FDAM) on the ADE20K validation set [22], show-
casing the integration of Attention Inversion (Attlnv) and Fre-
quency Dynamic Scaling (FreqScale).

Models | Params | mIoU
DeiT-$ [17] | 52.1M | 429
+ Attlnv +0.1IM | 43.5 (+0.6)

+ AttInv + FreqScale (Static) +1.2M | 43.8 (+0.9)
+ AttInv + FreqScale (Dynamic) +4.4M | 44.1 (+1.2)
+ AttInv + FreqScale (Dynamic + Group) | + 0.5M | 44.3 (+1.4)

Table 2. Ablation study on the number of static frequency scaling
weights (n) in FreqScale. The results are reported on the ADE20K
validation set [22].
Number of Weights (n) | n=2 | n=4 | n=8 | n=16
mloU | 440 | 443 | 441 | 438

Table 3. Ablation study on the group of static frequency scaling
weights (g) in FreqScale. The results are reported on the ADE20K
validation set [22].
Group of Weights (g) ‘ g=4 ‘ n=2~8 | n =16 ‘ n =32
mloU | 440 | 441 | 443 | 440

Table 4. Inference Speed Evaluation We apply our method to the
widely used ViT model DeiT [17]. The frames per second (FPS)
results are measured on a single RTX 3090 with a batch size of 1
and an image size of 512 x 2048. AttInv has a minor impact on
FPS, while FreqScale introduces a slight overhead due to the DFT
operation, as speed optimizations for frequency transformations
such as FFT/iFFT have not yet been fully implemented.
Model | DeiT-S-MLN | +Attlnv | +AttInv+FregScale (Ours)

FPS ‘ 8.3 ‘ 8.1 7.36

Time 121.1ms 124.2ms 135.8ms

Dynamic Attention Modulation (FDAM) mechanism on the
performance of semantic segmentation. The study is per-
formed on the ADE20K validation set [22] using the Vi-
sion Transformer (DeiT-S) [17] as the base model. We eval-
uate the contributions of two key components of FDAM:
Attention Inversion (AttInv) and Frequency Dynamic Scal-
ing (FreqScale), as well as the effectiveness of dynamic fre-
quency scaling and group-based frequency modulation.

Impact of Attention Inversion (AttInv). The first com-
ponent of FDAM, Attlnv, aims to mitigate the low-pass fil-
tering effect inherent in the self-attention mechanism of Vi-
sion Transformers. The results show that incorporating At-
tInv leads to an improvement of +0.6 mloU, increasing the
baseline mIoU from 42.9 to 43.5. Adding Attlnv incurs a
minimal parameter increase of only 0.1M, as shown in Ta-
ble 1. This demonstrates that Attlnv effectively enhances
the models frequency representation by introducing high-
pass filtering components, which help preserve fine-grained
details and textures that are otherwise lost due to the low-
pass nature of standard attention.

Effect of Frequency Dynamic Scaling (FreqScale). We
next investigate the contribution of FreqScale, which re-
fines the frequency representation by dynamically adjust-
ing the scaling of frequency bands. FreqScale is imple-
mented in two forms: static and dynamic. In the static
version, the frequency scaling weights are learned and re-
main fixed throughout training. The dynamic version, on
the other hand, computes scaling weights adaptively.

As shown in Table 1, when implemented with static scal-
ing weights, it adds 1.2M parameters and boosts mIoU by
+0.9 (to 43.8). In contrast, the fully dynamic version adds
4.4M parameters and achieves a slightly higher mIoU im-
provement of +1.2 (to 44.1), indicating that adaptive scaling
can further enhance performance, albeit with higher param-
eter overhead.

Effectiveness of Group-wise Reassembly Strategy. To
further optimize the frequency modulation process, we in-
troduce a group-wise dynamic frequency scaling strategy,
where the static scaling weights are grouped and combined
with dynamic coefficients to generate efficient frequency
scaling weights. This method reduces the parameter over-
head compared to the fully dynamic approach while still
providing the flexibility to adjust frequency components.
As shown in Table 1, this approach adds only 0.5M parame-
ters and attains the best performance, with an mIoU increase
of +1.4 (to 44.3). The group-wise strategy thus provides an
optimal trade-off between parameter efficiency and perfor-
mance gain.

Number of Static Frequency Scaling Weights (n). Ta-
ble 2 shows the results when varying n over {2,4,8,16}.
With n = 2, the model achieves an mloU of 44.0. Increas-
ing n to 4 yields the best performance with an mloU of
44.3, indicating that four static weights provide an optimal
balance between capturing diverse frequency components
and keeping the parameter cost moderate. When n is in-
creased to 8, the performance slightly drops to 44.1, and at
n = 16 the mloU decreases to 43.8. These results suggest
that n = 4 offers the best accuracy while avoiding over-
parameterization.

Group of Static Frequency Scaling Weights (g). Table 3
presents the effect of varying the Group number g among
{4,8,16,32}. The mloU scores obtained are 44.0, 44.1,
443, and 44.0, respectively. The highest performance is
achieved with ¢ = 16, indicating that grouping the static
scaling weights into 16 groups strikes an effective balance
between dynamic reassembly flexibility and parameter effi-
ciency. Both lower (¢ = 4 and g = 8) and higher (g = 32)
grouping configurations result in slightly inferior perfor-
mance.

Inference Speed Evaluation. Table 4 presents an evalua-
tion of the inference speed on the widely used DeiT-S-MLN
model [17] when integrated with our FDAM components.
The measurements are taken on a single RTX 3090 with a
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Figure 4. (a) Effective rank analysis for feature rank collapse.
Higher effective rank [6] indicates a greater ability to capture com-
plex patterns and nuanced details from the input data. FDAM
maintains a consistently higher effective rank across all layers
compared to the DeiT model using standard attention, demonstrat-
ing enhanced expressiveness of the attention mechanisms. (b) Fea-
ture similarity analysis. The cosing similarity increases with depth
in the baseline DeiT model, indicating a loss of diversity in patch
representations [14, 18]. The proposed FDAM method largely re-
duces this similarity, promoting more diverse features.
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Figure 5.
vanilla DeiT model [17], and the right shows DeiT combined with
the proposed FDAM method.

Cross-layer similarity analysis. The left shows the

batch size of 1 and an input image size of 512 x 2048. The
baseline DeiT-S-MLN model achieves 8.3 FPS (121.1 ms
per image). Incorporating Attlnv leads to a slight decrease
in speed to 8.1 FPS (124.2 ms per image), indicating a min-
imal computational overhead. When both Attlnv and Fre-
gScale are applied (our full FDAM), the FPS further drops
to 7.36 (135.8 ms per image). This additional overhead is
mainly due to the DFT operations required by FreqScale,
as optimizations such as FFT/iFFT have not yet been fully
implemented. Overall, the modest inference overhead in-
troduced by FDAM is well justified by the substantial per-
formance improvements in dense prediction tasks.

F. Effective Rank Analysis

The effective rank [6] is a measure that captures the di-
versity of singular values in a matrix, providing a more
nuanced understanding of the matrixs structure and its im-
plications for model behavior. Unlike the traditional rank,
which counts the number of nonzero singular values, the
effective rank takes their magnitudes into account, offering
deeper insights into the matrixs capacity to represent diverse

features.

Mathematically, the effective rank . is defined as the
Shannon entropy of the normalized singular values of a ma-
trix [6]:

n
Teff = €Xp [ — Z oilogo; |, (35)
where o; are the normalized singular values of the matrix
(e.g., a given feature map). A higher effective rank indicates
a more uniform distribution of singular values, suggesting a
greater capacity to capture diverse features.

As shown in Figure 4(a), the effective rank of the
DeiT [17] model decreases rapidly with depth, indicating
a loss of feature anisotropy and limiting the models ability
to capture complex patterns. In contrast, our FDAM main-
tains a consistently higher effective rank across all layers,
demonstrating its effectiveness in mitigating rank collapse
and enhancing the expressiveness of the attention mecha-
nism.

G. Feature Similarity Analysis

Understanding the similarity of feature representations
across different layers is crucial for analyzing model be-
havior, particularly in ViTs. We employ a similarity metric
based on pairwise cosine similarity to quantify how feature
representations evolve through the network.

Following the methodology in [2, 18], we compute the
average pairwise cosine similarity between token represen-
tations at each layer. Formally, given a layer index [ and
its corresponding feature matrix X () € R"*9, the feature

similarity M, 0

feat 18 cOmputed as:

‘ X0 x®
Mgy = Z >

l l
) S 5 1XO L) XD ||2||Xj,;>||2

where Xi(vl:) denotes the i-th row of X (), representing the
feature vector of the i-th token. This metric captures how
similar token representations are at a given layer, helping to
diagnose potential oversmoothing issues.

To further investigate the similarity patterns, we visual-
ize the evolution of feature similarity across layers for dif-
ferent architectures.

We assess our model’s feature similarity using cosine
similarity across layers in Figure 4(b). The DeiT shows a
sharp rise in patch-wise cosine similarity with depth, hitting
0.70 by layer 11, signaling feature homogenization from
repeated self-attention operations that erode discriminative
spatial information, which aligns with previous findings on
representation collapse in deep ViTs [14]. Our FDAM re-
duces late-layer similarity by up to 35%, enhancing ro-
bustness and task performance through more diverse rep-
resentations. This analysis shows our methods curb over-
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Figure 6. Layer—w1se comparison of the two-dimensional frequency response in DelT. Warmer colors denote higher response. Panels (a)-(1)
show the frequency responses of feature maps from all 12 layers. In the early layers (a)-(d), our method and DeiT exhibit similar spectral
characteristics. However, from the fifth layer onward (e)-(1), the difference becomes increasingly pronounced: our method consistently
maintains higher energy in the high-frequency range, while DeiT progressively suppresses high-frequency details. This suggests that our
approach effectively mitigates over-smoothing, preserving richer structural information across layers.
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Figure 7. Visualization of attention modulation learned by AttInv. Warmer colors indicate higher values for high-pass filters. AttInv tends
to assign higher values to foreground regions and semantic edges, emphasizing the focus on salient objects and boundaries.
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Figure 8. Visualization of frequency modulation map learned
by FreqScale. From the center to the border are low- to high-
frequency components. Brighter colors highlight amplified fre-
quency components. We observe that the center appears relatively
dim, implying a low modulation value for the low-frequency com-
ponent. This demonstrates that FreqScale tends to enhance mid-
to-high-frequency components in the feature maps, effectively pre-
venting over-smoothing caused by the attention mechanism.

smoothing, promote diversity, improve representational ca-
pacity, and boost performance on vision tasks.

We further conduct a cross-layer similarity analysis,
which reveals systematic patterns in feature representations
across network depths. As illustrated in Figure 5, the last
five layers of DeiT show saturated similarity (>0.63), im-
plying that they do not explore new features or information
as the model goes deeper. Our method alleviates this phe-
nomenon and reduces the cosine similarity by about 0.1 for
the last five layers, demonstrating that the proposed method
encourages the model to explore new features.

H. More Visulization Results

Frequency Response Visualization. We analyze the fre-
quency spectra of feature maps across all 12 layers of DeiT
to gain insights into the frequency characteristics of self-
attention. Figure 6 compares the frequency responses layer
by layer.

Subfigures (a)-(1) show the frequency responses from the
12 layers. In early layers (a)-(d), the spectral distributions
of DeiT and our method are similar, indicating minimal
impact on initial feature extraction. From the fifth layer
(e) onwards, spectral differences become more pronounced.
While DeiT suppresses high-frequency components, our
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(a) Image (b) DeiT
Figure 9. Feature and spectrum visualization. (a) Input im-
age. (b), (c) feature maps. (d), (e) feature spectrum. Our ap-
proach generates semantically focused activations (c). Compared
to DeiT’s feature maps (b), our feature maps (c) capture sharper,
more discriminative details, emphasizing object structures. The
spectrum (d) shows DeiT’s dominance in low-frequency compo-
nents, whereas our method exhibits stronger high-frequency com-
ponents, indicating better edge and detail preservation.

method preserves significantly more high-frequency energy.
This gap widens in deeper layers, demonstrating our ap-
proach’s ability to counteract the over-smoothing effect of
standard self-attention.

These results align with the proof in Section B that
vanilla self-attention acts as a low-pass filter, discarding
fine-grained details. Our method, by preserving more high-
frequency components, maintains a richer spectral distribu-
tion, enhancing feature representations for tasks requiring
fine details, such as fine-grained recognition and dense pre-
diction.

Visualization of AttInv. Figure 7 illustrates the behavior



of Attlnv, showing that it assigns higher high-pass filter val-
ues to foreground regions and semantic edges in the feature
map. This highlights the models emphasis on discrimina-
tive objects and boundaries, which are crucial for captur-
ing fine-grained textures and detailed information. By allo-
cating more attention to these regions, Attlnv enhances the
model’s ability to focus on spatially informative areas, im-
proving the quality of feature representations for tasks that
require precise recognition of objects and structures.

Visualization of FreqScale. Figure 8 visualizes the fre-
quency modulation map learned by FreqScale. The map
arranges frequency components spatially, with low frequen-
cies concentrated at the center and high frequencies at the
borders. Brighter areas represent amplified frequency com-
ponents. The center of the map appears relatively dim, indi-
cating that low-frequency components receive lower mod-
ulation values. This pattern suggests that FreqScale pri-
oritizes mid-to-high-frequency components in the feature
maps. By enhancing these frequencies, FreqScale counter-
acts the over-smoothing typically induced by self-attention,
effectively preserving crucial structural information and en-
abling more detailed feature extraction for dense prediction
tasks, where fine-grained detail is essential.

Feature Visualization. Figure 9 compares feature visual-
izations between DeiT and our method. DeiT features tend
to blur important details and textures due to its inherent
low-pass filtering characteristic. This results in a loss of
fine-grained information, which is essential for tasks that
demand high-precision visual understanding. In contrast,
our method generates sharper, more discriminative feature
maps, with enhanced emphasis on object structures. The
frequency spectrum of DeiT predominantly shows a bias to-
ward low-frequency components, reflecting its tendency to
suppress high-frequency details. On the other hand, our fea-
ture spectrum exhibits a more balanced distribution across
frequency bands, indicating a better preservation of fine-
grained details and localized features, which are critical for
tasks requiring precise spatial discrimination and detailed
object recognition.
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