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A. Details of ATR-UMOD dataset
A.l. UAV-borne RGB-IR Platform

Our dataset is acquired using a professional DJI Matrice
300 RTK equipped with either a Zenmuse H20T or H20N
camera to ensure flexible and stable flight in complex con-
ditions. The setup details of the DJI Matrice 300 RTK are
provided in Tab. 5. The Zenmuse H20T and H20N cameras
are advanced dual-sensor systems with vertically arranged
RGB and IR lenses. Both lenses operate at a frame rate of
30 frames per second. The RGB lens captures images at a
resolution of 1920 x 1080 pixels, while the IR lens operates
within the 8 «~ 14 um wavelength range with a resolution of
640 x 512 pixels.

A.2. The Misalignment in UAV-based RGB-IR Im-
ages

The raw multimodal images collected by the UAV-borne
RGB-IR platform exhibit inevitable misalignment due to
the differences in imaging space and acquisition time of

Parameter Specification

Unfolded: 810 x 670 x 430 mm
Folded: 430 x 420 x 430 mm

Aircraft Dimensions

Weight Approx. 6.3 kg (without payload)

Maximum Payload 2.7kg

Max Flight Time Up to 55 minutes (no payload)

Max Speed 23 m/s

Max Operating Altitude 7000 m

Maximum Flight Time Approximately 55 minutes (with
TB60 battery)

Maximum Ascend Speed
Maximum Descend Speed
Maximum Horizontal Speed

5 m/s (at sea level)

4 m/s (vertical), 6 m/s (glide)

23 m/s (at sea level, windless condi-
tions)

Table 5. The setup of the DJI Matrice 300 RTK

Figure 6. An example of misalignment in raw RGB-IR image
pairs.

the two sensors, as depicted in Fig. 6. This misalignment
disrupts spatial correspondence between RGB and IR rep-
resentations, leading to erroneous feature fusion in down-
stream tasks. As shown in Fig. 7, this misalignment can be
attributed to several key factors:

(1) Field of View Mismatch. Due to the hardware limi-
tations of the multimodal sensor system, the RGB and IR
images have discrepancies in the field of view, with the
RGB camera capturing larger field of view than the IR cam-
era. This discrepancy results in discrepancies in spatial
scope, making direct pixel-level misalignment challenging.

(2) Resolution Disparity. RGB and IR cameras typi-
cally have different resolutions due to sensor characteristics,
leading to a resolution mismatch between the two modali-
ties. The RGB camera often provides higher-resolution im-
ages than the IR camera, resulting in discrepancies in reso-
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Figure 7. Illustration of the image misalignment reasons in UAV-based RGB-IR images. (a) Misalignment for field of view mismatch,
resolution disparity, and angular deviation in RGB-IR sensors. (b) Misalignment for temporal synchronization error in RGB-IR sensors.

lution.

(3) Angular Deviation. Systematic errors in the manu-
facturing of RGB and IR sensors, primarily caused by len
calibration discrepancies and sensor placement inaccura-
cies, can lead to discrepancies in field angles. This issue is
particularly pronounced for distant objects since small dif-
ferences in field angles translate into larger spatial offsets at
greater distances.

(4) Temporal Synchronization Error. There exists
a slight but inherent temporal delay between the multi-
modal images acquisition due to differences in sensor re-
sponse times and the triggering mechanisms. This non-
synchronicity means that any motion of the object or plat-
form will lead to a discrepancies in object positions in the
imagery. This time lag-induced displacements can signif-
icantly affect the accuracy of feature matching and fusion
processes, especially in scenarios involving fast-moving ob-
jects.

Consequently, the fusion of these misaligned images
necessitates the advanced preprocessing techniques to re-
solve both spatial and temporal discrepancies for subse-
quent analysis.

A.3. Data Preprocessing

To ensure high-quality and well-aligned RGB-IR image
pairs for subsequent analysis, we developed a rigorous data
preprocessing pipeline to address misalignment and image
invalidity challenges, as shown in Fig. 8. The pipeline con-
sists of the following key steps:

(1) Video Frame Extraction. We uniformly sam-
pled frames from the original RGB and IR video streams

to maintain a consistent temporal resolution across both
modalities. This step ensures that each frame in one modal-
ity can be accurately matched with its counterpart in the
other.

(2) Timestamp Registration. Due to inherent temporal
discrepancies between the RGB and IR sensors, dynamic
objects in the scene often exhibit positional shifts across
multimodal images. To mitigate this issue, we performed
timestamp registration by artificially minimizing the tem-
poral offsets between corresponding frames. Specifically,
initial frame pairs were selected by analyzing object posi-
tions across multimodal streams, ensuring that positional
deviations of dynamic elements were minimized. Subse-
quently, unmatched frames in either modality were dis-
carded to maintain strict one-to-one multimodal image cor-
respondence.

(3) Data Pruning. To enhance the quality of the dataset
and address image invalidity challenges, we manually se-
lected representative RGB-IR image pairs and discarding
redundant or anomalous frames. In detail, image pairs ex-
hibiting minimal variation, significant artifacts or anoma-
lies, as well as missing modality data were excluded. Such
pruning ensures that only semantically meaningful and
high-quality image pairs are retained for further processing.

(4) Spatial Registration. Given the inherent spatial mis-
alignment between RGB and IR images, we developed an
automated registration workflow in a coarse-to-fine manner.
* Coarse Registration. The coarse registration process

aligns RGB images with IR images in field angles, spa-
tial scopes, and resolution through a series of transforma-
tions. Firstly, RGB images were rotated to match the an-
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Figure 8. Visualization of the data preprocessing process in ATR-UMOD dataset.

gular orientation of their IR counterparts. Next, cropping
was applied to ensure that the field of view remained spa-
tially consistent across modalities. Finally, images were
rescaled to match the IR resolution of 640x512 pixels.
These transformations were parameterized using an affine
matrix and a cropping matrix. Through extensive statisti-
cal analysis, we observed that the transformation parame-
ters were approximately consistent under the same imag-
ing height and angle. Leveraging this insight, we estab-
lished a mapping function between imaging parameters
(flying heights and camera angles) and the transformation
parameters, enabling fully automated coarse registration.
Fine Registration. While coarse registration establishes
an initial alignment, only utilizing unified matrix param-
eters may not ensure precise registration across all cases.
To address residual misalignment, fine registration em-
ploys feature-based methods for further refinement at the
pixel level. Initially, distinctive features were extracted
from the multimodal images using the Scale-Invariant
Feature Transform (SIFT) [10]. Robust feature matching
was then achieved through the Random Sample Consen-
sus (RANSAC) algorithm [4]. Based on the matched fea-
tures, an affine transformation was estimated to achieve
precise pixel-level alignment. To prevent significant in-
formation loss due to potential SIFT failure, we imple-
mented a fallback mechanism: if the proportion of invalid
pixels (e.g., zero-value pixels) in the registered RGB im-
ages exceeded 30%, the final output reverted to the result
of coarse registration.

A.4. Object Annotation

For object annotation, we independently annotated ob-
jects in both RGB and IR images. Each annotation under-
went a thorough secondary review to enhance precision, es-
tablishing a reliable ground truth for the object detection
task. To maintain cross-modal consistency, we performed
manual cross-verification to align corresponding objects be-
tween RGB and IR images. This step ensures that object
categories and spatial positions remain as consistent as pos-
sible across modalities. The final dataset provides anno-
tations in both XML and JSON formats, supporting both
horizontal bounding boxes and rotated bounding boxes.
Horizontal bounding boxes are represented as (z,y, w, h),
where (z,y) denotes the center coordinates, and w and
h represent the width and height of the box, respectively.
However, given the diverse orientations of objects in UAV-
based images, it can be challenging to mark object extents
accurately using only horizontal bounding boxes. Conse-
quently, rotated bounding boxes are also available in our
annotation files with two widely adopted formats: A pa-
rameterized representation as (x,y,w, h, ), where 6 de-
notes the orientation angle relative to the horizontal axis.
A point-based representation defined by the coordinates of
the four corners: (x1,y1, T2, Y2, T3, Y3, X4,Ys). This dual-
format annotation strategy enhances the adaptability of the
dataset and facilitates a wide range of research applications.

A.S. Visualization of Different Object Categories

To improve the practical applicability of the detection
model, ATR-UMOD dataset encompasses a diverse set of



11 object categories, including car, SUV, van, bus, freight
car, truck, motorcycle, trailer, excavator, crane, and tank
truck categories, offering a comprehensive and fine-grained
object categorization. Sample images of these categories
are shown in Fig. 9. This diversity forces the model to
learn high-level discriminative features for fine-grained de-
tection, improving its ability to distinguish visually similar
objects with greater precision.

Truck

Car Suv Bus

Freight Car

V[otorc_ycle Traller Excavator Crane Tank Truck

Figure 9. Examples of different object categories in ATR-UMOD
dataset. The first row shows the RGB images, while the second
row shows the corresponding IR images.

B. Implementation Details of our PCDF
B.1. Detailed Initial Prompt Construction

As illustrated in Eq. (1) in the main text, the initial
prompt is constructed by formatting various condition at-
tributes into a fixed template. Considering the standard text
prompts for CLIP are typically structured as “A photo of a
[CLASS]”, we design a similar template to ensure compat-
ibility. This template comprises a subject description and
several condition prefixes. Specifically, the subject descrip-
tion consists of a global description, “An aerial image,” and
an ending symbol, “.”, which provides a domain-specific
context for the subsequent conditions. The condition pre-
fixes are designed to specify specific condition attributes,
including scenario, height, angle, time, weather, and illu-
mination. For example, the prefix “over” specifies the sce-
nario, while “at” refers to both the altitude and angle of the
image. Consequently, a complete initial prompt can con-
structed as follows:

An aerial image, over {scenario}, at a
altitude of {altitude}, at an angle of
{angle}, at {Time}, in {Weather},

in {Illumination}.

B.2. Condition Merged in Experiments

The excessive variability of conditions results in limited
sample sizes for each conditions, increasing the risk of over-
fitting and hindering model training. Therefore, conditions

are appropriately merged to enhance data efficiency. In de-
tail, altitude conditions are categorized into low altitude
(£ 120m) and high altitude (> 120m); angle conditions
are grouped into low angle (< 30°) and high angle (> 30°);
time conditions are merged into Morning (TAM « 2P M),
Afternoon (2PM « 7PM), and Night (TPM «~ TAM);
“After Rain” and “Rainy” combined into “Cloudy” under
weather condition; “Overexposure” and “Twilight” merged
into “Normal” and “Dim” under illumination condition, re-
spectively.

B.3. The Pipeline of the Training and Testing Pro-
cess
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Figure 10. The training and testing processes of PCDF.

To ensure effective training of each component, our
model adopts a two-stage training strategy. As illustrated in
Fig. 10, the first stage focuses on learning the relationship
between conditions and multimodal reliability by training
only the sample-specific condition prompt learning (SCPL)
module and the condition-aware dynamic fusion (CDF)
module. Building on the pre-trained parameters in this
stage, the second stage trains the prompt-guided condition-
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Figure 11. Visualization of the unimodal RGB model, unimodal IR model, and multimodal detector on ATR-UMOD dataset across different
conditions. Noted that CS, FY, ND, PL, and RD represent Construction site, Factory, Neighborhood, Parking lot, and Road, respectively.

decoupling module (PCD) to decouple multimodal features
into condition-specific and condition-invariant components,
allowing testing without explicit condition annotations. As
a result, in the testing stage, the PCD module, which relies
on condition prompts as input, is unnecessary, thereby en-
hancing the practicality and deployment feasibility of our
PCDF model in real-world applications.

C. Research Background of Our Method

Under diverse imaging conditions, object characteristics
in multimodal images exhibit significant variations, leading
to fluctuations in multimodal reliability [18]. For instance,
under favorable illumination conditions, RGB images pro-
vide rich color information and detailed object textures,
making them highly reliable for object detection. However,
in poor illumination conditions, RGB images may suffer
from noise and reduced visibility, severely degrading detec-
tion performance. In contrast, IR images remain unaffected
by illumination changes, offering higher reliability in such
conditions. To validate this issue, we evaluate the detection
performance of the unimodal RGB, unimodal IR, and mul-
timodal detectors across different conditions on the ATR-
UMOD dataset, as shown in Fig. 1 1. For a fair comparison,
unimodal detectors share the same architecture, while the
multimodal detector integrates features from the unimodal
detectors.

The results in Fig. 11 reveal that the performance gap
between RGB and IR unimodal detectors fluctuates across
conditions, demonstrating the dynamic reliability of each
modality under varying conditions. Theoretically, a fusion
model should outperform the best unimodal model in any

given condition, as it integrates complementary multimodal
information for a more robust and comprehensive object
representations. However, as depicted in Fig. 11, the per-
formance of the fusion models often falls short of the best
unimodal model. This discrepancy arises because the fusion
model fail to account for the fluctuating reliability of modal-
ities across varying conditions, leading to suboptimal fusion
that neither fully leverages the strengths of the more reliable
modality nor effectively mitigates the noise introduced by
less reliable ones. To overcome this limitation, we propose
the PCDF method, which dynamically adjusts multimodal
contributions based on conditions, enhancing the robustness
and reliability of the fusion model across diverse scenarios.

D. Experiments in Dronevehicle

We evaluate our proposed PCDF against the state-of-the-
art unimodal and multimodal fusion methods on the Dron-
eVehicle dataset. It is worth noting that as the DroneVehicle
dataset has no extra condition annotations, we manually re-
labelled ”day” and "night” conditions for each image pair to
complete the model training. Among unimodal approaches,
we consider one-stage detectors including RetinaNet [8],
S2A-Net [5], and YOLOVS5s [7]; as well as the two-stage
methods Faster R-CNN [11], Oriented R-CNN [13], and
RolTransformer [3]. To ensure a comprehensive evalua-
tion, each method uses RGB and IR images independently
as training data. For multimodal fusion, we compare PCDF
with several advanced methods: UA-CMDet [12], Halfway
Fusion [9], CIAN [16], AR-CNN [17], MBNet [19], TS-
FADet [15], C2Former [14], SLBAF-Net [2], CALNet [6],
and OAFA [1]. All the multimodal detectors are trained



Detectors Modality Car Truck  Freight-car Bus Van mAP (%) 1
RetinaNet [8] 78.5 344 24.1 69.8 28.8 47.1
Faster R-CNN [11] 79.0 49.0 37.2 77.0 37.0 55.9
Oriented R-CNN [13] RGB 80.1 53.8 41.6 85.4 43.3 60.8
S2 A-Net [5] 80.0 54.2 422 84.9 43.8 61.0
RolTransformer [3] 61.6 55.1 42.3 85.5 44.8 61.6
YOLOVSs [7] 78.6 55.3 43.8 87.1 46.0 62.1
RetinaNet [8] 88.8 354 39.5 76.5 32.1 54.5
Faster R-CNN [11] 89.4 53.5 48.3 87.0 42.6 64.2
Oriented R-CNN [13] R 89.8 57.4 53.1 89.3 454 67.0
S2 A-Net [5] 89.9 54.5 55.8 88.9 48.4 67.5
RolTransformer [3] 90.1 60.4 58.9 89.7 52.2 70.3
YOLOVS5s [7] 90.0 59.5 60.8 89.5 53.8 70.7
UA-CMDet [12] 87.5 60.7 46.8 87.1 38.0 64.0
Halfway Fusion [9] 90.1 62.3 58.5 89.1 49.8 70.0
CIAN [16] 90.1 63.8 60.7 89.1 50.3 70.8
AR-CNN [17] 90.1 64.8 62.1 89.4 51.5 71.6
MBNet [19] 90.1 64.4 62.4 88.8 53.6 71.9
TSFADet [15] RGB+IR 89.9 67.9 63.7 89.8 54.0 73.1
C2 Former [14] 90.2 68.3 64.4 89.8 58.5 74.2
SLBAF-Net [2] 90.2 72.0 68.6 89.9 59.9 76.1
CALNet [6] 90.3 73.7 68.7 89.7 59.7 76.4
OAFA [1] 90.3 76.8 73.3 90.3 66.0 79.4
PCDF (Ours) 90.2 71.7 74.4 89.8 66.2 79.7

Table 6. Detection results (in %) on the DroneVehicle dataset. Note that all detectors locate and classify vehicles with OBB heads. Best
results are highlighted in bold. And the second one is marked with underline.

with IR labels.

The results are listed in Tab. 6. It can be observed
that our PCDF achieves the highest mAP score of 79.7%,
demonstrating its superior performance compared to both
unimodal and multimodal methods. In each category, PCDF
achieves 90.2%, 77.7%, 74.4%, 89.8%, and 66.2% AP on
the car, truck, freight-car, bus, and van categories respec-
tively, showcasing its competitive performance across var-
ious categories. Additionally, the results indicate that even
when considering only the ’day’ and "night’ conditions, our
method still achieves outstanding performance, underscor-
ing the significance of condition-guided dynamic fusion.

E. Ablation Study of Different Conditions

To assess the contribution of each condition in our pro-
posed method, we conduct an ablation study on our ATR-
UMOD dataset. Fig. 12 illustrates the mAP performance
under different conditions. The results reveal that each con-
dition contributes to varying degrees of performance im-
provement, highlighting their respective influence on the
learning of the multimodal reliability.

Among these conditions, the illumination condition has
the most significant impact on performance. This observa-
tion aligns with the understanding that RGB images excel
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Figure 12. Ablation study of different conditions on the ATR-
UMOD dataset. “None” means without any condition, and “All”
means with all conditions.

under good illumination due to their rich color and texture
information, while IR images perform better under poor il-
lumination conditions for their insensitivity to illumination
variations, highlighting the critical role of illumination in
multimodal fusion. Time conditions indirectly affect illu-
mination levels and also have a positive influence on per-
formance. Additionally, altitude leads to secondary im-



provements. The underlying reason can be that at low al-
titude, RGB images provide more reliable information for
their finer texture details. However, when comes to higher
altitude, the reduced object size leads to a loss of texture
details, resulting in decreased reliability. In contrast, IR im-
ages, which rely on thermal emissions, maintain a more sta-
ble detection ability, particularly for objects with notable
temperature differences. For angle conditions, higher an-
gles can lead to occlusions or reflections in RGB images,
whereas IR images exhibit a certain degree of resistance to
these effects. Therefore, angle conditions still affect multi-
modal reliability to some extent. Weather conditions mod-
erately influence the reliability of RGB images by affecting
object visibility, thereby leading to performance improve-
ments. Lastly, scenario condition has the least impact, sug-
gesting that spatial context alone is not a dominant factor
for multimodal reliability.

The results provide insights into the interplay between
different conditions and multimodal feature learning, offer-
ing guidance for future research on dynamic fusion meth-
ods. Moreover, combining all conditions yields the best
performance, highlighting the importance of considering all
factors comprehensively in multimodal fusion.

F. Visualization of the Intermediate Results

In PCDF, we decouple the original multimodal fea-
tures into condition-specific and condition-invariant fea-
tures, where the former captures condition information, and
the latter is adaptively reassigned to achieve reliable feature
fusion. To validate its effectiveness, we visualize interme-
diate feature maps in Fig. 13, including the original mul-
timodal features, decoupled condition-invariant features,
fixed fusion features with consistent multimodal contribu-
tions, and dynamic fusion features with reassigned multi-
modal contributions. It can be observed that the decoupled
condition-irrelevant multimodal features retain more target-
related information and less condition noise than the origi-
nal multimodal features, which not only validates the effec-
tiveness of our decoupling strategy but also demonstrates
their capability to suppress condition-induced noise. Fur-
thermore, the dynamic fusion features provide more reliable
object representations with reduced interferences compared
to their fixed-contribution counterparts. This highlights
the effectiveness of our dynamic fusion method, which
leverages discriminative information from the dominant
modality while suppressing noise from the less-contributive
modality.

G. Hyperparameter Analyses

The crucial hyperparameters in PCDF include the thresh-
old 7 in Eq. (2) in the main text. This parameter directly
determines the number of selected condition attributes in
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SCPL, affecting the available conditions for multimodal fu-
sion. To investigate the impact of 7 on the performance
of PCDF, we conduct a series of experiments on the ATR-
UMOD dataset, with results summarized in Fig. 14. It can
be observed that the mAP performance initially improves
before gradually declining as 7 increases. This trend can be
attributed to that a higher 7 allows the model to focus on
more relevant conditions, which can reduce the influence of
noisy conditions. Despite this, excessively large values of
7 may filter out valuable condition information, resulting in
insufficient or even a complete lack of condition guidance,
ultimately degrading performance. These findings suggest
that careful tuning of this parameter is necessary to achieve
optimal performance in practical applications.

H. More Visualization Results in Different
Conditions

In this section, we present comprehensive visualization
results under different conditions, including altitude, angle,
time, weather, illumination, and scenario conditions, as dis-
played in Fig. 15 to Fig. 20. The confidence threshold is
set to 0.25, and fusion-based results are displayed on IR
images to align with supervisory labels. Missed detections
and false positives are highlighted with blue and red dashed
circles, respectively. These visualizations demonstrate the
robustness and adaptability of our method across diverse
conditions, showcasing its potential for complex real-world
applications.
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Figure 15. Results in different altitude conditions.
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Figure 16. Results in different angle conditions.
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Figure 17. Results in different time conditions.
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Figure 18. Results in different weather conditions.
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Figure 19. Results in different illumination conditions.
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Figure 20. Results in different scenario conditions.

Ground Truth in IR



	Details of ATR-UMOD dataset
	UAV-borne RGB-IR Platform
	The Misalignment in UAV-based RGB-IR Images
	Data Preprocessing
	Object Annotation
	Visualization of Different Object Categories

	Implementation Details of our PCDF
	Detailed Initial Prompt Construction
	Condition Merged in Experiments
	The Pipeline of the Training and Testing Process

	Research Background of Our Method
	Experiments in Dronevehicle
	Ablation Study of Different Conditions
	Visualization of the Intermediate Results
	Hyperparameter Analyses
	More Visualization Results in Different Conditions

