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Supplementary Material

A. Datasets
A.1. Data Creation & Data Filtering
There are several well-known datasets of indoor scenes, in-
cluding ScanNet [11], Replica [44], Gibson [49], and Mat-
terport3D (MP3D) [6]. However, the embodied AI com-
munity faces several challenges when working with these
datasets: 1) there is a limited number of high-quality real-
scan datasets, where “high-quality” refers to watertight sur-
faces, well-organized layouts, and unified reconstruction
quality; 2) synthetic scenes often lack realistic features such
as collision-rich layouts and high-fidelity furniture assets;
3) public datasets of indoor scenes employ different or-
ganizational structures, making it difficult to collect scene
meshes with unified formats and scales, which impedes
their effective use in simulation and policy learning.

In this work, we collect and preprocess 1152 high-
quality meshes of complex indoor scenes from ProcTHOR-
10K [12], HSSD [22], Gibson, and MP3D to learn a gen-
eralizable exploration policy for active 3D mapping. To
leverage the digital assets in the general format originally
coupling in AI2THOR [24] and Unity [20] backend, we
created 972 meshes of complex scenes from ProcTHOR-
10K using our export script. After manually filtering out
the high-quality meshes of complex indoor scenes from
these datasets, we preprocess them into a unified format
and scale. Finally, these meshes are split into 1024 train-

ing scenes and 128 test scenes in our benchmark. The de-
tails of the data source are shown in Table 6. The details of
preprocessing each dataset are as follows:
ProcTHOR-10K. ProcTHOR [12] and AI2-THOR [24]
have empowered the research community to procedurally
generate fully interactive, high-fidelity indoor scenes with
diverse layouts for robotic training at scale. They intro-
duce the ProcTHOR-10K dataset as templates of gener-
ated layouts, which includes 10,000 diverse indoor scenes.
However, the original AI2-THOR platform and ProcTHOR
dataset are limited by their reliance on the Habitat plat-
form [41] and Unity Engine [20] for asset simulation and
management, which constrains the extensibility of these
valuable digital assets. To address this limitation, we de-
veloped an autonomous script that batch exports the gener-
ated scenes from Unity Editor to mesh files. This approach
enables the procedural generation of scene meshes with ed-
itable content, including materials, floorplans, object place-
ment, and controllable connectivity. Notably, users can gen-
erate an arbitrary number of scenes and then export them
into mesh files using our exporting script. These infinitely
generated 3D assets can be utilized for both policy train-
ing and digital content creation for AR/VR. We will release
both the export script and the created assets.
Habitat Synthetic Scenes Dataset (HSSD). The HSSD
dataset comprises 211 meticulously crafted 3D environ-
ments specifically designed to facilitate generalization ca-

Table 6. The sources of our collected and processed scene meshes. We created the meshes of complex scenes from ProcTHOR-10K using
our export script. After manually filtering out the meshes of complex indoor scenes from ProcTHOR-10K, HSSD, Gibson, and MP3D,
we preprocess them and split them into 1024 training scenes and 128 test scenes.

Dataset Total Amount Type / Mode Amount Training Test

ProcTHOR-10K
896 (train)

76 (test)

4-room 284 256 28
5-room 164 164 0

2-bed-2-bath 280 256 24
7-room-3-bed 114 96 18
8-room-3-bed 28 28 0

12-room 64 64 0
12-room-3-bed 38 32 6

HSSD 32 (train), 10 (test)
easy 10

32 10medium 8
hard 24

Gibson 96 (train), 24 (test) real-scan 120 96 24
MP3D 18 (test) real-scan 18 0 18

Total (Ours) 1152 mixed 1152 1024 128



pabilities within realistic 3D environments. This collec-
tion is characterized by its professionally curated digital as-
sets and intricate spatial arrangements. We have selected
42 exemplary indoor scenes from this dataset, which serve
as valuable photorealistic synthetic sources for exploration
tasks. While decorative elements improve scene realism,
they are unnecessary for policy learning and introduce ex-
cessive computational costs that hinder large-scale simula-
tion training. Consequently, the scenes underwent system-
atic preprocessing through geometric simplification, partic-
ularly focusing on decorative elements and doors that might
impede cross-room navigability.
Gibson & Matterport3D. Gibson and Matterport3D are
public real-scan datasets providing hundreds of complex in-
door scenes. However, the styles of these scene meshes ex-
hibit significant variation, and the mesh quality is too incon-
sistent for direct use. Therefore, we filter these two datasets
by the following criteria: 1) accurate reconstruction with
minimal floaters and artifacts, 2) enclosed scene mesh with
a nearly watertight external surface, and 3) one-floor struc-
ture. As a result, we obtain 120 diverse high-quality scene
meshes from Gibson for training and evaluation. Also, we
split all 18 selected meshes from MP3D for cross-dataset
and out-of-domain evaluation.

A.2. Data Preprocessing
Mesh Preprocessing. To standardize the coordinate sys-
tems across scene meshes from different datasets, we trans-
form all meshes such that their origin points lie at the
geometric center of the floors, with the height direction
isotropic to the +Z-axis. The transformation scripts are im-
plemented in Python using Open3D library [55]
Ground-Truth Point Cloud. We generate ground-truth
point clouds using the Poisson Disk sampling method [53],
implemented in Open3D [55], to sample 100,000 points
from the 3D scene meshes. To simplify visibility determi-
nation, we voxelize these point clouds at a specified resolu-
tion (grid size = 128 in this work) and filter out obviously
invisible points, such as internal points enclosed within sur-
faces. These voxelized points serve as the ground-truth
point clouds for the meshes and are used to compute key
metrics like coverage ratio.

A.3. Dataset Split & Training Stages
Due to memory constraints and computational efficiency,
we distributed the 1,024 training scenarios across two se-
quential training stages (i.e., stage 1 & stage 2). The final
checkpoint from the first training stage served as parameter
initialization for the subsequent stage. The one-stage explo-
ration policy is optimized through 2.5k iterations and uses
approximately 48 hours of training time on a single GeForce
RTX 4090 GPU.

The dataset split of the two training stages is as fol-

lows. Stage 1: “procthor-4-room (256)”, “procthor-5-room
(164)”, “procthor-8-room-3-bed (28)”, “procthor-12-room-
3-bed (32)”, “hssd (32)”. Stage 2: “procthor-2-bed-2-bath
(256)”, “procthor-7-room-3-bed (96)”, “procthor-12-room
(64)”, “gibson (96)”.

B. Implementation Details
B.1. Occupancy Grid Mapping Algorithm
The goal of an occupancy mapping algorithm [46] is to es-
timate the posterior probability of occupancy over voxels
given the current probabilistic grid and the novel measure-
ment event of camera ray casting. In particular, the more
frequently a voxel is passed through by camera rays, the
more confident the agent regards it as navigable free space.
PyCUDA-based Bresenham’s Line Algorithm. Before
updating the probabilistic occupancy grid, Bresenham’s line
algorithm [4] is implemented to cast the ray path in 3D
space between the camera viewpoint and the endpoints
among the point cloud back-projected from captured depth
maps. To accelerate the computing efficiency, we use Py-
CUDA [23] to implement Bresenham’s line algorithm.
Derivation of Map Updating. In practice, we adhere to
the algorithm implementation outlined in GenNBV [9]. A
comprehensive explanation of the methodology, along with
the experimental results, is provided in the appendix of
GenNBV. We provide the key derivation of the log-odds for-
mulation of occupancy probability as follows:

Before updating the probabilistic occupancy map Gt,
Bresenham’s line algorithm is implemented to cast the ray
path in 3D space between the camera viewpoint and the end-
points among the point cloud back-projected from Dt+1.
According to the classical occupancy grid mapping algo-
rithm [46], we have the log-odds formulation of occupancy
probability:

logOdd(mi|zj) = logOdd(mi)+log
p(zj |mi = 1)

p(zj |mi = 0)
, (4)

where mi denotes the occupancy probability of ith voxel in
the map Gt, zj is the measurement event that jth camera
ray passes through this voxel.

For the item C = log
p(zj |mi=1)
p(zj |mi=0) , there are only two

cases for the measurement event in fact: zj = 0 or
zj = 1. Thus, if the measurement event zj (i.g., the
voxel is passed through by the j

th camera ray) happens,
we’ll update the occupancy by adding the value of C1 =

log
p(zj=1|mi=1)
p(zj=1|mi=0) . If it’s not passed, we’ll add the value

C2 = log
p(zj=0|mi=1)
p(zj=0|mi=0) . The values of C1 and C2 can be

set as empirical constants, depending on factors such as the
accuracy of ray casting and the confidence of each ray. Ac-
tually, C →

= |C1
C2

|. We set a high value for C → (i.e., high
confidence) because our experiments are based on the real-
istic simulator and accurate observations like depth maps.



Table 7. The key hyperparameters for our policy learning.

Term Value
Optimizer Adam
Optimization batch size 128
Learning rate 0.0001
Training Iterations 2500
Training Environments 32
N steps 512
N epochs 4
Buffer size 30
Value coefficient 0.8
Entropy coefficient 0.01
Discount factor ω 0.99
GAE ε 0.99
PPO clipping 0.2

Therefore, we can update the occupancy status of each
voxel in the map Gt by adding a constant for each ray cast-
ing process. Note that the probabilistic occupancy map F

G

is continuously updated within an episode. Finally, the oc-
cupancy status of voxels can be classified into three cate-
gories: unknown, occupied, and free, by setting an empiri-
cal threshold.

B.2. A* Path-Finding Algorithm
To evaluate the navigability between the agent’s current po-
sition and predicted 3D target position, we implement a
classic A* path-finding algorithm [17] in 3D space. We de-
veloped a CUDA-based implementation of the algorithm,
increasing the computational efficiency. The system classi-
fies a target position as unnavigable if the computed path
length exceeds a predefined threshold, ensuring that our
NBV policy predicts reliable and safe target poses.

Most previous works regard path-finding algorithms as
a local policy and define a few movement commands (e.g.,
move forward 10cm, turn left 30↑) as their action space.
However, we don’t follow this paradigm in our work for
the following main reasons: 1) The key challenge of explo-
ration policy is to determine the next best viewpoint, instead
of the next neighbor step. Classic and learning-based plan-
ning and control methods both are capable of handling the
control process toward the target viewpoint. 2) Popular ac-
tion space, which consists of move forward 10cm, turn left
30

↑, turn right 30↑, makes redundant waypoints that pro-
duce inefficient trajectory, non-smooth control, and costly
frequency of map updating, planning, and control.

B.3. Key Hyperparameters and Details
The key hyperparameters of our policy learning are shown
in Table 7. Our implementation builds upon the codebase
of Legged Gym [39] and utilizes the PPO implementation

from Stable-Baselines3 [34], which is developed in Py-
Torch [33].
PPO Implementation. Specifically, given our parameter-
ized policy ϑω, the objective of PPO is to maximize the fol-
lowing function:

L(ϖ) = Et

[
ϑω(at|st)
ϑωold(at|st)

A
εωold (st, at)

]
, (5)

where Aεωold (st, at) is the advantage function that measures
the value of taking action at at state st under the current pol-
icy ϑωold . To prevent significant deviation of the new policy
from the old policy, PPO incorporates a clipped surrogate
objective function:

L
CLIP

(ϖ) =Et[min(ϱt(ϖ)Aεωold (st, at),

clip(rt(ϖ), 1→ ς, 1 + ς)A
εωold (st, at))],

(6)

where ϱt(ϖ) =
εω(at|st)
εωold (at|st) and ς is a hyper-parameter that

controls the size of the trust region.
Onboard Cameras. We assume that upon reaching the tar-
get pose, the agent performs four sequential 90-degree ro-
tations and captures an observation at each orientation. To
mitigate the significant computational overhead associated
with repeated rendering during rotation, we implemented a
simulation of four cameras mounted on the agent, with their
headings oriented at 90-degree intervals.
Keyframe Budget During Inference. The budget T = 50

during inference was set based on the average exploration
keyframes T = 31.78 across methods. This value balances
policy completeness and computational efficiency while not
compromising the generalizability.

B.4. Implementation of Baseline Methods
We implement and evaluate the following works in our
benchmark to demonstrate the superiority of our proposed
method: 1) Random Policy randomly samples actions from
Gaussian distribution within the action space. 2) Vacuum
simulates a heuristic exploration policy for robot vacuums.
We follow [8] to let policy move straight when safe and
execute a random number of 9↑turns when a collision oc-
curs. 3) FBE always moves the agent towards the navigable
nearest boundary between observed and unknown areas. 4)
UPEN [15] estimates the information gain of candidate tra-
jectories sampled by RRT [1], where the gain is estimated
by model ensembles. We reduce the number of ensembling
models and the number of layers due to the limited mem-
ory. 5) ANM [51] learns exploration in a neural implicit
representation optimization framework. It estimates the in-
formation gain of candidate poses by three empirical crite-
ria. We replace its RL-based local planner with our A-star
planner. 6) ANS [7]: The original implementation of this
policy relies on a global normalized map with unified reso-
lution as input instead of an egocentric observed map, thus



it cannot be directly generalized to unknown environments.
We adapt this policy to a generalizable pipeline that takes
a global egocentric map as input and also augment the pol-
icy learning with our random initialization strategy to make
it generalizable. Given ground-truth poses, we adapt the
original active SLAM system to an active mapping system.
7) OccAnt [35]: Similar to ANS, we also provide ground-
truth poses to adapt it to an active mapping system. Due
to the limited storage, we reduced its map resolution and
consequently increased the voxel size to ensure a similar
perceptual range.

B.5. Visualization Implementation
All trajectories in Figure 1, 2, 6 are actual results. We record
waypoints/keyframes and reconstruct the active mapping
process using Open3D for offline visualization.

C. Training Strategy
C.1. Scene Updating Strategy
To enhance the generalizability, we create a training set in-
cluding 512 diverse indoor scenes in each training stage
from our GLEAM-Bench. However, we cannot launch such
a large number of parallel training environments in simula-
tion due to the limitations of computational efficiency and
memory. As introduced in Sec. 4.4, we adopt a workaround
to update the active scene in the limited training environ-
ments. We launch 32 training environments in Isaac Gym,
and load 16 different scenes as a sampling set for each en-
vironment. During training, there is a predefined probabil-
ity of p to randomly activate a scene in each environment’s
inactive sampling set. In particular, we move the replaced
scenes to the inactive area (i.e., out of the agents’ movement
space) in the simulator and move the sampled scenes to the
active areas of corresponding environments. As shown in
Table 5, we found that frequently updating the active scenes
utilizes the diversity of training scenes, and improves the
generalizability of policies.

C.2. Capturing at Long-Term Target Positions
Previous work [8] typically employs discrete single-step ac-
tions, such as moving forward 10cm or turning left 10.
However, this single-step planning and control approach
is inconsistent with real-world robotic systems and signif-
icantly increases the computational cost of simulation for
RL-based policy training. Moreover, real-world inference
of this setup requires numerous policy network iterations,
making it prohibitively time-consuming. Therefore, we op-
timize our approach to predict navigable next-best view-
points in free space rather than relying on classical single-
step actions.

To enhance practical effectiveness, we capture four sur-
rounding views at each predicted position, simulating the

scanning process. This multi-view setup provides a broader
spatial context and enables more effective long-term plan-
ning during policy training.

D. Additional Results
D.1. The Reward of Trajectory Efficiency
Table 8. The effect of path efficiency reward. †: trained on 128
scenes and half-standard 2.5k iterations.
Settings Cov. AUC Comp. KF TL
GLEAM † 60.23% 51.69% 0.89m 23.20 47.32m
GLEAM † with effi. rew. 56.61% 47.91% 0.96m 17.91 34.41m

As shown in Table 8, while implementing a generic effi-
ciency reward term r

E!
t = →1 [9] indeed reduce the num-

ber of keyframes (→5.29) and trajectory length (→12.91m),
it penalizes exploratory actions like detouring around obsta-
cles, leading to conservative policies (→3.62% Cov.).
D.2. Discussion and Future Directions
Realistic settings & Real-world deployment. 1) Noisy ob-

servation. Real-world deployments inevitably confront im-
perfect sensor inputs such as camera noise and depth am-
biguity. Our framework employs probabilistic occupancy
maps to mitigate noisy raw inputs of sensors, yet persistent
noise patterns still propagate geometric errors during active
mapping. 2) Pose estimation. While our system obtains ac-
curate poses through the simulator, the pose estimation in
practical scenarios with fast camera motions or textureless
regions induces pose drift. This spatial uncertainty mani-
fests as misaligned geometry fragments, particularly when
scanning thin structures like chair legs or lamp arms. 3)
Open environments. Unlike bounded scanning domains in
simulation, real-world scenes often contain dynamically ex-
panding areas (e.g., newly opened doors). Existing frame-
works struggle to build memory-efficient representations
for unbounded and dynamic scenes, which shows that the
sim-to-real gap still has a lot of potential to be explored.

While real-world deployment remains an open chal-
lenge, we advance the sim-to-real validation across sensor-

Table 9. The robustness of GLEAM under Gaussian noise
N(0,ω2) (unit: meter) during inference. ω2

P : variance of cumu-
lative pose noise. ω2

D: variance of depth noise. KF: keyframes.
TL: trajectory length. “*”: non-cumulative per-step noise

Settings ω2
P ω2

D Cov. AUC CD KF TL
GLEAM (no noise) 66.50% 57.63% 0.80m 29.57 54.51m

Pose-only

0.1 0 63.27% 54.41% 0.86m 28.27 41.63m
0.3 0 60.73% 52.11% 0.92m 24.95 35.71m
0.5 0 55.59% 48.24% 0.99m 20.31 22.79m
0.1* 0 66.18% 56.62% 0.76m 30.69 49.36m
0.5* 0 58.54% 50.53% 0.95m 23.61 38.51m

Depth-only
0 0.05 64.94% 55.31% 0.82m 30.44 45.05m
0 0.1 60.21% 51.09% 0.96m 29.21 36.78m
0 0.2 54.77% 46.30% 1.13m 27.51 27.21m

Depth+Pose
0.1 0.05 60.44% 51.76% 0.91m 28.20 36.62m
0.3 0.1 54.03% 47.21% 1.09m 24.74 24.33m
0.5 0.1 51.36% 44.32% 1.17m 20.94 20.56m
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Figure 7. The one-step inference time of our key components.

noise tolerance and computation cost to demonstrate con-
crete progress toward deployability. To evaluate the sensor-
noise tolerance of GLEAM, we inject hardware-aligned
Gaussian noise to observations during inference, deriving
from real-world sensors like Intel®RealSense D455 depth
camera (< 2% error at 4m) and TDK InvenSense ICM-
42688-P IMU. As shown in Table 9, GLEAM maintains
strong robustness despite training on ideal observations,
which stems from our probabilistic map that inherently sup-
presses transient noise by Bayesian updating.

Our system achieves real-time inference (104.7Hz) on
a PC with an RTX 3090 GPU, with latency analysis in
Figure 7 demonstrating the efficiency of our lightweight
policy network and CUDA-accelerated map updating/A*
planning, ensuring seamless high-frequency perception and
decision-making in the real world.
Challenging 3D benchmark & 3D action space. We’ve
explored the potential of our framework for challenging 3D
benchmark, including 3D action space (x, y, z, pitch, yaw)
and 3D optimization objectives. In this setting, our agent is
encouraged to capture all details, such as the surface under
the underside of a table, in complex 3D scenes. While our
agent demonstrates promising effectiveness and generaliz-
ability in scanning most of unobstructed surfaces, we found
it quite difficult to capture the geometrically complex sur-
faces (e.g., the undersides of tables and self-occlusion sur-
faces of decorations) in cluttered 3D environments. Also,
the heavy computational burden and limited memory pre-
vent us from optimizing the components like 3D represen-
tations and scaling the number of training scenes.
Challenging multi-floor complex scenes. Although we’ve
been exploring active mapping for complex single-floor in-
door scenes, the tough cases in the real world are the multi-
floor indoor scenes. These environments introduce unique
cross-floor topological dependencies and vertical naviga-
tion constraints that existing frameworks fail to adequately
model. Moreover, the inherent geometric discontinuities
between floors exacerbate memory fragmentation when us-
ing conventional spatial representations, leading to increas-
ing memory overhead.
Multi-agent collaboration. Multi-agent collaboration is
one of the solutions for complex scenarios such as multi-
floor scenes. However, scaling to collaborative active
mapping introduces novel fundamental challenges in dis-
tributed strategy optimization, dynamic role allocation, and
communications. These challenges demand the rethink-
ing of existing frameworks, particularly in developing scal-
able and memory-efficient representations and decentral-
ized decision-making architectures.
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