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This is supplementary material for GenHaze: Pioneer-
ing Controllable One-Step Realistic Haze Generation for
Real-World Dehazing.

We present the following materials in this supplementary
material:

• Sec.1 The process of constructing the haze database.

• Sec.2 Theoretical explanation for GenHaze and better
fine-tuning results.

• Sec.3 More details of dehazing fune-tuning for different
baselines.

• Sec.4 Detailed information about evalution metrics.

• Sec.5 Comparison of tSNE visualizations.

• Sec.6 Time cost of fine-tuning.

• Sec.7 Additional ablation studies.

• Sec.8 More visual comparisons of haze generation.

• Sec.9 More visual comparisons of image dehazing for
baselines.

• Sec.10 Limitation and future work.

1. Constructing the Haze Database

To build a comprehensive haze database, we leverage the
Multi-Modal Large Language Model (MLLM) to gener-
ate high-quality captions that describe haze-related char-
acteristics in real-world images. The process focuses on
the description of haze-specific attributes, such as thick-
ness, color, light diffusion, texture, distance effects, con-
trast reduction, ambient mood, depth gradient, and atmo-
spheric layering, while excluding unrelated scene elements.
As illustrated in Fig.1, iterative refinement of haze de-
scription prompts is employed to optimize MLLM’s perfor-
mance. By using in-context learning techniques, we guide
the model to identify relevant haze attributes and produce
concise, precise captions limited to 50 words. For instance,
the haze is described as dense and yellowish, diffusing light
heavily to create a muted tone, with reduced contrast and

Please write a prompt for me. The general content is to describe the haze-related information in this picture from
multiple aspects, without other scene content, and limit the length to about 50 words. This will help you answer
better.

Please provide a concise description of the haze or fog characteristics in this image, focusing only on its visual
qualities, thickness, color, light diffusion, and impact on visibility. Exclude any mention of objects or scene
elements, and keep the response to 50 words.

Are there any other aspects? Please help me think more comprehensively and give me a new version.

Please use 50 words to describe the haze or fog characteristics in this image, covering aspects such as thickness, 
color, light diffusion, texture, distance effects, contrast reduction, ambient mood, color temperature influence, 
edge softness, depth gradient, and atmospheric layering. Focus exclusively on haze-related details.

Please use 50 words to describe the haze or fog characteristics in this image,
covering aspects such as thickness, color, light diffusion, texture, distance
effects, contrast reduction, ambient mood, color temperature influence,
edge softness, depth gradient, and atmospheric layering. Focus exclusively
on haze-related details.

The haze is dense and yellowish, heavily diffusing light and creating a warm, muted tone. It significantly
reduces contrast and softens edges. The texture is smooth with visible atmospheric layering, creating a
pronounced depth gradient that blurs distant structures, contributing to a subdued, hazy urban ambiance.

Figure 1. The details of constructing the haze database. Itera-
tively refining the haze description task to enable the MLLM [14]
to focus on specific haze attributes, leveraging similar in-context
learning to guide the model in identifying relevant attributes and
generating precise prompts.

softened edges. These captions reflect key haze proper-
ties like texture smoothness, atmospheric layering, and pro-
nounced depth gradients. This approach ensures the gen-
eration of a robust database with accurately labeled haze
descriptions, which can be further utilized to replace hand-
crafted text for better robustness and coverage.

2. Theory for GenHaze and Better Fine-tuning
2.1. Why Do We Need GenHaze
Traditional methods for generating hazy images typically
rely on the atmospheric scattering model [6, 11, 28]:

I(x) = J (x) · t(x) +A ·
(
1− t(x)

)
, (1)

where I(x) is the hazy image, J (x) is the clear image,
and t(x) denotes the transmission. In these formulations,
parameters such as the scattering coefficient and atmo-
spheric light are often assumed to be spatially invariant.
This static assumption fails to capture the spatially varying
and dynamic characteristics of real-world haze—like local
changes in density, color, and light scattering—which leads
to a synthetic hazy dataset, Dp, that diverges from the true
distribution of real hazy images, Dt. This discrepancy can
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Figure 2. tSNE visualizations of haze images generated by different methods and real-world haze images. The haze generated by
GenHaze is more controllable and closer to the real-world haze than other methods [3, 22, 28, 29].

be expressed as:

dD(Dp,Dt) =

∫ ∣∣pDp
(I)− pDt

(I)
∣∣ dI. (2)

A large dD(Dp,Dt) implies that models trained on Dp

may struggle to generalize to real hazy images. Domain
adaptation theory [1] formalizes this by bounding the risk
(error) of a model f on the real distribution Dt:

RDt
(f) ≤ RDp

(f) + dH∆H(Dp,Dt) + λ, (3)

where dH∆H(Dp,Dt) quantifies the divergence between
the synthetic and real domains, and λ is a constant repre-
senting ideal conditions. A high divergence directly trans-
lates into a higher risk bound for dehazing models when
applied to real-world data.

While some methods try to adapt the scattering model by
incorporating spatially varying parameters, they often en-
counter challenges with complicated pipeline and still fail
to capture the full nuances of natural haze.

GenHaze takes a different route by leveraging a diffu-
sion model conditioned on real haze features. Instead of
relying solely on fixed, physically derived parameters, Gen-
Haze extracts haze characteristics from real-world images
and integrates these cues into the generation process. The
goal is to produce a generated distribution Dg that is closer
to the true distribution Dt, such that:

dD(Dg,Dt) < dD(Dp,Dt), (4)

dH∆H(Dg,Dt) < dH∆H(Dp,Dt). (5)

This reduction in divergence implies that models trained
on Dg will have a lower risk when applied to real-world
data, as indicated by the domain adaptation risk bound.
Moreover, by transforming the training object, GenHaze
bypasses the inefficiencies of multi-step diffusion, achiev-
ing realistic haze generation in a single step.

2.2. Leveraging Diffusion Models for Haze Gener-
ation

Unlike conventional diffusion models that iteratively de-
noise over T steps, GenHaze employs a one-step genera-
tion strategy. Traditional diffusion models follow a forward
process adding noise to a clean image x0:

xt =
√
αtx0 +

√
1− αtϵ, (6)

where ϵ ∼ N (0, I), and a reverse process gradually re-
fines xT back to x0. GenHaze, however, repurposes this
paradigm for a ”clean-to-haze” transformation. It fixes the
timestep at t = T , treating the encoded clean image E(x)
as the starting point:

zT = E(x), (7)

and trains the model to predict the hazy image distribu-
tion directly in one forward pass:

p(x0|E(x),Fd, etext) = N (µθ(E(x),Fd, etext), σ2
θI), (8)

where x0 is the hazy image. Here, µθ and σθ are condi-
tioned on E(x), Fd, and etext, enabling a direct transforma-
tion from clean to hazy without iterative sampling. This is
theoretically grounded in the observation that at t = T [18],
the diffusion process typically yields near-pure noise, but
by substituting E(x) (with a mean of zero, the same with
Gaussian noise), the model learns a single-step mapping to
the target distribution. The training loss reinforces this:

L1-step = Ex

[
∥D(µθ(E(x),Fd, etext, T ))− xhazy∥1

]
, (9)

This eliminates multi-step overhead while preserving real-
ism through conditioning on Fd and etext [24], ensures that
the model learns to predict realistic haze degradation in one
inference step. It also reduces the iterative denoising of tra-
ditional diffusion (reducing the complexity from O(T ) to
O(1)), making it computationally efficient while preserv-
ing the generative capacity of the model.



2.3. Theoretical Analysis of Genhaze Advantage
Traditional synthetic datasets, denoted as Dp, differ signif-
icantly from real-world hazy datasets, Dt. This gap is cap-
tured by the total variation distance:

dD(Dp,Dt) =

∫
|pDp

(I)− pDt
(I)| dI, (10)

where pDp(I) and pDt(I) represent the probability den-
sity functions of the synthetic and real hazy datasets, re-
spectively. This distributional divergence has practical im-
plications, elevating the risk bound in domain adaptation
theory [1]:

RDt
(f) ≤ RDp

(f) + dH∆H(Dp,Dt) + λ, (11)

where RDt
(f) is the error of a dehazing model f on real

data, RDp
(f) is the error on synthetic data, dH∆H quan-

tifies domain discrepancy, and λ is a constant tied to ideal
conditions. A large dH∆H(Dp,Dt) increases RDt(f), hin-
dering generalization to real-world haze.

GenHaze mitigates this by conditioning its generation on
real haze features Fd and refined text embeddings etext, ex-
tracted via a degradation encoder and a caption-based em-
bedding process from actual hazy images, yielding a condi-
tional distribution:

p(x0|E(x),Fd, etext) = N (µθ(E(x),Fd, etext), σ2
θI),

(12)
where E(x) is the encoded clean image in the latent

space, etext is a refined text embedding, and µθ and σθ are
model-predicted parameters. This conditioning aligns the
generated distribution pDg (I) with pDt(I), achieving:

dD(Dg,Dt) < dD(Dp,Dt). (13)

The alignment stems from Fd encoding instance-
specific haze attributes (e.g., density, color shifts) and the
text embedding etext capturing haze descriptions. These are
embedded into the diffusion process via a haze modulation
mechanism:

ŵi = si · wi, ŵ′
i =

ŵi√∑
i(ŵi)2 + ϵ

, (14)

where si, derived from Fd, adjusts convolutional
weights wi to reflect real haze characteristics, and ϵ en-
sures stability. This reduces variance in Dg , aligning it with
Dt and lowering RDt

(f), thus enhancing dehazing perfor-
mance [12].

GenHaze overcomes two key limitations of traditional
synthetic datasets by jointly leveraging instance-specific
haze embeddings Fd and text embeddings etext:

• High Distributional Divergence and Embedding
Alignment: By modeling p(x0|Fd, etext), GenHaze cap-
tures the nuanced complexity of real haze. It does so
not only by encoding the physical attributes through Fd

but also by integrating haze descriptions through etext.
This reference-controllable dual conditioning surpasses
physics-based models that rely on simplified assump-
tions. The reduced dD(Dg,Dt) minimizes domain adap-
tation risk as described by the adaptation bound, making
Dg a robust training proxy for real-world dehazing [1].

• Optimization of the Text Embedding and Joint Adap-
tation: The text embedding etext enhances adaptation by
integrating general haze descriptions with the instance-
specific haze attributes. GenHaze initializes a general em-
bedding egeneral as the average of CLIP-encoded captions
from real haze images:

egeneral =
1

N

N∑
i=1

f emb(f cap(Ii)), (15)

where f cap generates captions and f emb maps them to em-
beddings. This provides a prior capturing broad haze at-
tributes. To adapt to specific instances, GenHaze intro-
duces a learnable prompt offset ∆e:

etext = egeneral +∆e, (16)

where ∆e is optimized during training. The conditional
distribution becomes:

p(x0|E(x),Fd, egeneral +∆e) =

N
(
µθ(E(x),Fd, egeneral +∆e), σ2

θI
)
.

(17)

Theoretically, ∆e refines egeneral by minimizing the diver-
gence between the generated and real hazy distributions.
During training, the model updates θ (including µθ and
σθ) and ∆e to optimize:

L1-step = Ex

[
∥D(µθ(E(x),Fd, egeneral +∆e, T ))− xhazy∥1

]
.

(18)
Since etext conditions the generation via mechanisms like
cross-attention, optimizing ∆e adjusts the embedding to
emphasize haze-specific semantics (e.g., thickness, opac-
ity), further reducing distributional mismatch. This joint
adaptation through both general and specific embedding
aligns the generated Dg with Dt, thereby effectively re-
ducing the domain discrepancy dH∆H(Dp,Dt) and con-
sequently lowering RDt(f) as predicted by adaptation
theory.

Probabilistically, conditioning on Fd and etext mini-
mizes:



∫
|pDg

(I)− pDt
(I)| dI, (19)

constraining Dg to real haze manifolds. The one-step ap-
proach and optimized etext together enable GenHaze to ef-
ficiently transform clean images into hazy ones, minimiz-
ing dD(Dg,Dt), reducing RDt

(f), and improving dehaz-
ing generalization. By addressing distributional divergence
and computational inefficiency, GenHaze provides a the-
oretically robust, practically efficient solution for realistic
haze generation.

2.4. Validation with t-SNE and Distance Metrics
To validate that the generated distribution Dg of GenHaze
aligns closely with the target real-world haze distribution
Dt, we employ both t-SNE visualizations and distance met-
rics, as shown in Fig.2. These methods offer qualitative and
quantitative evidence that GenHaze achieves superior align-
ment compared to traditional approaches.

t-SNE is used to reduce the high-dimensional feature
space of haze images into a 2D representation, which facil-
itates a visual comparison of the distributions. The t-SNE
algorithm minimizes the Kullback-Leibler divergence be-
tween the joint probabilities of the high-dimensional data
and those of the low-dimensional embedding:

Lt-SNE =
∑
i

∑
j

pij log
pij
qij

, (20)

where pij denotes the similarity between data points i
and j in the original space (computed from pairwise Eu-
clidean distances), and qij represents the similarity in the
2D embedding space, modeled using a t-distribution to mit-
igate the crowding problem. This approach preserves local
structure, allowing us to assess how closely the generated
haze images (Dg) cluster with real haze images (Dt) com-
pared to methods such as RIDCP [28], Low-Res [3], and
CycleGAN-Turbo [22]. As shown in Fig.2, GenHaze pro-
duces tighter clusters with the real-world haze samples, in-
dicating a closer alignment.
Distance Metric. To quantitatively assess the alignment be-
tween the generated distribution Dg and the real-world haze
distribution Dt, we compute the average nearest-neighbor
distance in the t-SNE embedding space. This metric mea-
sures the proximity of each generated sample to its closest
real-world counterpart:

dt-SNE =
1

N

N∑
i=1

min
j

∥z(Dg)
i − z

(Dt)
j ∥2, (21)

where z
(Dg)
i and z

(Dt)
j denote the 2D t-SNE embed-

dings of the generated and real haze images, respectively,
and N is the number of generated samples. A smaller
dt-SNE indicates a closer local alignment between Dg and

Dt, which is also suggestive of a reduced global divergence
(i.e. dD(Dg,Dt) =

∫ ∣∣pDg (I) − pDt(I)
∣∣ dI,) and aligns

with our theoretical formulation.
The results shown in Fig.2 indicate that GenHaze

achieves a dt-SNE of 1.20, outperforming RIDCP (1.44) and
Low-Res (1.30). This smaller distance demonstrates that
Dg is more closely aligned with Dt in the embedding space,
underscoring GenHaze’s capability to generate haze im-
ages that more accurately reflect real-world characteristics.
Moreover, the tighter clustering and reduced dt-SNE confirm
the effectiveness of the one-step generation strategy and the
clean-to-haze protocol in producing realistic, controllable
haze—capturing the subtle nuances of natural haze distri-
butions better than competing methods.

3. More Details of Dehazing Fune-tuning
For the fine-tuning of dehazing baselines, we select all the
dehazing baselines that are pre-trained on OTS [17] for fair
comparison, T3-DiffWeather, PSD, and KANet are chosen
with their pre-trained weights for real-world scenes. Tab.1
summarizes the detailed configuration for each baseline.
The initial learning rate (LR) is set for each model and is
significantly smaller than the rates used for training the net-
works from scratch. This is because our paradigm is de-
signed to unlock the potential of already-trained models in
a straightforward manner, without requiring large adjust-
ments that would necessitate a high learning rate. Most
models use the Adam optimizer [8] with a weight decay of
0.0000, while Dehazeformer and TaylorFormer utilize the
AdamW optimizer [19] for better regularization.

Fine-tuning is conducted over 1-2 epochs because our
approach eliminates the need for extensive training on large
datasets. GenHaze generates realistic and controllable haze
images, allowing baselines to adapt efficiently with minimal
training. In addition, no learning rate schedule is applied to
demonstrate the robustness of our paradigm for each model.
Notably, we retain the original loss functions specified in
the respective papers and do not modify any model archi-
tectures. This highlights the effectiveness of our strategy
in enhancing existing baselines without requiring architec-
tural changes. All experiments are conducted using the Py-
Torch framework on A800 GPUs to ensure reproducibility
and computational efficiency.

Table 1. Detailed fine-tuning configurations of dehazing baselines.

Model Initial LR Optimizer Weight Decay Epochs LR Schedule

MSBDN [9] 0.0001 Adam 0.0000 1 None
FocalNet [7] 0.00006 Adam 0.0000 2 None
DeHamer [13] 0.0001 Adam 0.0000 2 None
Dehazeformer [25] 0.00012 AdamW 0.01 2 None
TaylorFormer [23] 0.0001 AdamW 0.01 2 None
T3-DiffWeather [4] 0.00007 Adam 0.0000 1 None
PSD [6] 0.0001 Adam 0.0000 1 None
KANet [11] 0.000015 Adam 0.0000 1 None



4. Evaluation Metrics
Unlike previous approaches [11, 28], we evaluate the ef-
fectiveness of GenHaze in enhancing dehazing performance
from multiple perspectives. The improvements across vari-
ous comprehensive non-reference metrics demonstrate that
GenHaze can unlock the potential of existing baselines
through a straightforward yet effective approach. Specifi-
cally, we adopt a set of non-reference metrics tailored for
various aspects of image quality assessment, as detailed in
Tab. 2. These metrics provide a robust framework for an-
alyzing the effectiveness of our methods across aesthetic,
perceptual, and structural dimensions:

- FADE [10]: This metric evaluates fog and haze qual-
ity through statistical analysis of foggy regions and density-
based measures, making it ideal for haze-specific assess-
ments.

- BRISQUE [20]: Focused on general distortions,
BRISQUE analyzes scene statistics and locally normalized
luminance to assess image quality.

- NIMA [26]: Based on a CNN-based architecture,
NIMA predicts aesthetic scores, providing insights into the
subjective quality of images.

- NIQE [21]: A training-free metric that uses statistics
from the natural scene to evaluate the overall naturalness of
an image.

- PIQE [27]: Conducting block-wise analysis and spatial
feature extraction, PIQE effectively detects and measures
local distortions.

- MUSIQ [15]: Leveraging multi-scale processing and
transformer-based architectures, MUSIQ assesses percep-
tual quality, particularly for complex image features.

- PaQ-2-PiQ [30]: This deep learning-based metric
combines patch-level and global quality analyses, offering
a comprehensive perspective on image fidelity and quality.

These metrics are carefully selected to cover diverse
evaluation needs, ensuring a thorough and objective com-
parison of performance across multiple datasets and tasks.
By incorporating both specialized and general-purpose met-
rics, we provide a holistic assessment of image quality in
dehazing scenarios.

5. Comparison of tSNE Visualization
Fig.2 presents tSNE visualizations comparing haze images
generated by different methods with real-world haze im-
ages, where orange represents real-world haze and blue rep-
resents generated haze. The average cluster distances reflect
the alignment of generated haze with real-world distribu-
tions. UWNR [29] and CycleGAN-Turbo [22] exhibit the
largest distances (2.00 and 1.64, respectively), indicating
significant deviations from real-world haze characteristics.
RIDCP and Low-Res show moderate improvements, with
distances of 1.44 and 1.30, capturing some haze properties

Table 2. Overview of Non-Reference Image Quality Assessment
Metrics.

Metric Key Features Application Focus

FADE [10]
• Statistical analysis of foggy regions
• Density-based evaluation Fog/haze assessment

BRISQUE [20]
• Scene statistics analysis
• Locally normalized luminance General distortions

NIMA [26]
• CNN-based architecture
• Aesthetic score prediction Aesthetic quality

NIQE [21]
• Natural scene statistics
• Training-free approach Natural image quality

PIQE [27]
• Block-wise analysis
• Spatial feature extraction Local distortions

MUSIQ [15]
• Multi-scale processing
• Transformer-based Perceptual quality

PaQ-2-PiQ [30]
• Patch quality analysis
• Deep learning based Global-local quality

but still lacking precision. GenHaze, however, achieves the
smallest distance (1.20), demonstrating superior alignment
with real-world haze. This tighter clustering highlights
GenHaze’s ability to generate highly realistic and control-
lable haze images that closely resemble natural haze, sur-
passing other methods in capturing real-world haze charac-
teristics.

6. Time cost of Fine-tuning
Tab.3 provides a comparison of tuning time and perfor-
mance gains for baseline models when incorporating Gen-
Haze. The table illustrates the balance between inference
time on the original baselines and the additional fine-tuning
time required with GenHaze. For TaylorFormer [23], the
inference time is approximately 17 minutes for the base-
line, and fine-tuning with GenHaze requires 19 minutes.
This tuning time significantly improves the performance,
reducing FADE by over 0.9 and improving BRISQUE and
NIQE scores by approximately 12 and 1, respectively. Sim-
ilarly, for T3-DiffWeather [5], the baseline inference time
is 22 minutes, while the GenHaze fine-tuning process takes
25 minutes, yielding substantial improvements, including
a FADE reduction exceeding 1.4 and notable gains in
BRISQUE and NIQE. These results demonstrate that the
fine-tuning time required for integrating GenHaze is rela-
tively modest compared to the overall inference time of the
baselines. At the same time, it delivers significant perfor-
mance enhancements, underscoring the practical benefits of
adopting GenHaze for efficient and high-quality dehazing.

Table 3. More comparisons of tuning time and performance gains
for baselines on the RTTS [16] dataset.

Settings FADE ↓ BRISQUE ↓ NIQE↓ Inference Time /Fune-tuning Time

TaylorFormer [23] 1.9827 28.51 4.66 17min
+GenHaze -0.9671 -11.84 -1.05 19min
T3-DiffWeather [5] 2.3771 30.14 5.20 22min
+GenHaze -1.4000 -8.13 -1.32 25min



7. Additional Ablation Studies

In this section, we supplement the ablation experiments
on baseline fine-tuning of the dehazing method. Specifi-
cally, we use MSBDN [9] to conduct experiments on the
RTTS [16] dataset. Other parameter settings remain the
same as the previous configuration.

Table 4. Ablation studies of epochs in fune-tuning process.

Settings FADE ↓ BRISQUE ↓ NIQE↓ PIQE ↓

0 (Baseline) 1.5818 28.51 4.66 44.96
1 (ours) 0.6881 20.23 3.65 28.26
2 0.6734 21.07 3.69 30.12
3 0.7136 23.45 3.99 32.45
4 0.7392 24.06 4.08 33.72

Number of epochs in fune-tuning. Tab.4 highlights the
impact of the number of fine-tuning epochs on the perfor-
mance of dehazing baselines adapted with GenHaze. The
results demonstrate that fine-tuning for 1–2 epochs achieves
the optimal balance between improving model performance
and maintaining generalization. Specifically, fine-tuning for
1 epoch significantly reduces FADE from 1.5818 (baseline)
to 0.6881, while also yielding substantial improvements in
BRISQUE, NIQE, and PIQE metrics. Extending the fine-
tuning to 2 epochs further enhances dehazing performance
slightly, with FADE decreasing to 0.6734, indicating that
the haze images generated by GenHaze effectively unlock
the potential of existing baselines with minimal training ef-
fort.

However, fine-tuning beyond 2 epochs leads to a pro-
gressive decline in performance, as shown by the increas-
ing FADE and PIQE scores for 3 and 4 epochs. This sug-
gests that extended fine-tuning may disrupt the pre-trained
capabilities of the baseline models, introducing unneces-
sary adjustments that negatively impact their performance.
To address this, we set the number of fine-tuning epochs
to 1–2 based on the characteristics of each baseline, en-
suring both computational efficiency and effective perfor-
mance enhancement without overfitting. While reducing
the learning rate or increasing the training dataset size
could potentially mitigate these issues, such modifications
are beyond the scope of this work. Therefore, we do not
explore these adjustments further in this study.
Training from scratch v.s GenHaze. We provide addi-
tional details regarding the experimental setup shown in
Tab.5. For training from scratch, the haze reference im-
ages are collected from the internet, while clean images are
selected entirely from the clean subset of the Allweather
dataset. The training dataset is fully synthesized using Gen-
Haze’s single-step reference-controlled generation strategy.
All other training hyperparameters (e.g., optimizer type,
learning rate, number of epochs, and loss functions) remain

Table 5. Com. of the training from scratch v.s GenHaze.
Method 1. Baseline 1 + GenHaze 2. Trained on our syn. images 2 + GenHaze

FADE↓ BRISQUE↓ FADE↓ BRISQUE↓ Time FADE↓ BRISQUE↓ Time FADE↓ BRISQUE↓
MSBDN 1.5818 28.51 0.6881 20.23 ≈14 min 0.8312 21.39 ≈1200 min 0.6524 18.89
Dehamer 1.8926 33.07 0.8263 25.12 ≈16 min 0.8937 23.97 ≈1350 min 0.7963 21.19

consistent with the baseline codes.
As demonstrated in Tab.5, models trained from scratch

on datasets generated by GenHaze significantly outperform
those trained on existing synthetic datasets, confirming that
GenHaze generates superior-quality data. However, train-
ing from scratch still slightly underperforms compared to
the baseline enhanced by the GenHaze strategy, due to Gen-
Haze’s capability of targeted optimization for specific haze
conditions at a much faster speed (85 times faster). Further-
more, applying GenHaze’s single-step reference-controlled
strategy to the scratch-trained models can potentially further
improve dehazing performance.

Overall, Tab.5 highlights two key advantages of Gen-
Haze:

i. It generates high-quality haze datasets, significantly
enhancing dehazing performance when training mod-
els from scratch.

ii. Its single-step reference-controllability rapidly im-
proves baseline performance through a plug-and-play
strategy, even for strong baselines.

Dimensions of learnable prompts. Regarding the learn-
able prompts, our aim is for them to adaptively capture the
characteristics of the current haze image based on the gen-
eral text embeddings. Thus, the dimension of the learnable
prompts is aligned with that of the general embedding en-
coded by CLIP during the offline stage, which is initialized
at 1024. Nevertheless, in order to conduct a more compre-
hensive investigation, we explore various dimensions, in-
cluding 512, 768, 1024, 1280, and 2048. To ensure com-
patibility, a 1x1 convolutional layer is employed for dimen-
sional alignment. As shown in Tab.6, the misalignment of
dimensions and the subsequent alignment process result in
suboptimal outcomes, likely due to the introduction of un-
necessary noise into the prompt embeddings.

Table 6. Abl. studies of physics-based generation in fune-tuning.
w/o. Text Embedding w/o. Learnable Prompts 512 768 1024 1280 2048

FID↓ 58.89 57.99 57.61 57.57 57.12 57.45 57.59
sFID↓ 107.56 106.53 105.92 105.99 105.43 105.79 105.87

8. Visual Comparisons of Haze Generation
The visual comparisons in Figs.3, 4, and 5 showcase the ef-
fectiveness of GenHaze in generating realistic hazy images
compared to other existing methods, including RIDCP [28],
Low-Res [3], InstructPix2Pix [2], CycleGAN-Turbo [22],
and UWNR [29]. Each figure illustrates clean images (a),
real-world haze images as references (b), and the results
from GenHaze (c) alongside competing methods (d–h). In
all examples, GenHaze demonstrates its superior ability



to generate haze effects that closely align with real-world
haze in terms of density, texture, and consistency. Unlike
methods such as Low-Res [3], which often produce notice-
able artifacts and color shifts, GenHaze avoids such incon-
sistencies and retains a natural appearance. Furthermore,
compared to RIDCP [28], which struggles with distribu-
tion alignment, GenHaze achieves higher fidelity and better
matches the reference haze characteristics.

In addition, the comparison also highlights GenHaze’s
robustness across diverse scenes, including urban areas,
natural landscapes, and dynamic settings such as running
events. For instance, in Figs.3 and 4, GenHaze accurately
reproduces subtle variations in haze density and scattering
effects, maintaining the original scene’s structural integrity.
Methods like UWNR [29] and CycleGAN-Turbo [22], on
the other hand, often fail to maintain these subtle details,
leading to oversmoothed or visually implausible results.

Moreover, unlike InstructPix2Pix [2] and other con-
trollable pipelines, GenHaze achieves both one-step high-
quality haze generation and controllability without requir-
ing extensive parameter tuning. As seen in Fig.5, GenHaze
successfully integrates diverse haze intensities while pre-
serving the image’s clarity and background details, which
are often distorted by alternative methods.

9. Visual Comparisons of Image Dehazing.
Fig.6 and 7 showcase the effectiveness of GenHaze in un-
locking the potential of existing dehazing baselines across
various real-world hazy scenarios. These results underline
the significant enhancements achieved in image dehazing
when GenHaze is integrated into diverse baseline models.

In Fig.6, baselines such as MSBDN [9], De-
hamer [13], Dehazeformer [25], TaylorFormer [23], T3-
DiffWeather [5], and PSD [6] exhibit varying levels of de-
hazing performance, but many struggle to fully recover de-
tails or maintain realistic color distributions, particularly in
challenging haze conditions. By incorporating GenHaze,
these models demonstrate remarkable improvements, with
clearer outputs, enhanced structural consistency, and more
natural color representation. For instance, intricate details
in complex scenes, such as trees and human figures, are bet-
ter preserved after the integration.

Fig.7 further highlights the ability of GenHaze to en-
hance baseline models across urban and other environ-
ments. Baselines like FocalNet [7], KANet [11], and De-
hazeformer [25], which initially encounter issues such as
oversaturation or uneven dehazing, achieve more robust and
consistent results with the aid of GenHaze. These improve-
ments are especially pronounced in dense haze and complex
lighting conditions, where GenHaze helps produce more re-
alistic and visually appealing outputs. These comparisons
clearly demonstrate that GenHaze serves as an effective and
efficient solution to amplify the capabilities of existing de-

hazing baselines, significantly improving their performance
and adaptability across diverse haze scenarios.

10. Limitation and Future Work
While GenHaze effectively enables one-step, controllable
haze generation guided by real reference images, its perfor-
mance remains influenced by inherent limitations of latent
diffusion models (LDMs). Future work includes adapting
our Clean-to-Haze pipeline to alternative generative frame-
works beyond latent diffusion models, such as masked au-
toregressive or token-based autoregressive models. In addi-
tion, we will leverage the powerful capabilities of GenHaze
to build a more comprehensive, diverse, and realistic haze
dataset to further enhance generalization and robustness and
address a wider range of practical applications.
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Figure 3. More visual comparisons of haze generation. Our Genhaze generates high-quality hazy images that closely match (b) real-world
haze images.
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Figure 4. More visual comparisons of haze generation. Our Genhaze generates high-quality hazy images that closely match (b) real-world
haze images.
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Figure 5. More visual comparisons of haze generation. Our Genhaze generates high-quality hazy images that closely match (b) real-world
haze images.
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Figure 6. More visual comparisons of multiple baselines on real-world haze samples [16], before and after integrating GenHaze.
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Figure 7. More visual comparisons of multiple baselines on real-world haze samples [10, 16], before and after integrating GenHaze.
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