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Reproducibility
All our experiments were conducted on two NVIDIA RTX
6000 GPUs with 64GB of RAM. The framework is imple-
mented in Python 3.12.5 with the following key packages
and their corresponding dependencies:
• rembg 2.0.64
• pytorch 2.6.0+cu126
• cv2 4.11.0
• numpy 2.1.3
• scipy 1.15.1
• PIL 11.1.0
• torchvision 0.21.0+cu126
• transformer 4.48.2
• sklearn 1.6.1
• seaborn 0.13.2

Dataset Labeling Process
The labeling was conducted using Clip Studio Paint (CSP),
a digital illustration software that provides a wide range
of annotation tools. The annotator had full access to
CSP’s features, including layering, fill tools, and fine-tuning
brushes (e.g., leftover pen) to ensure precise segmentation
of patterns. The primary goal of the labeling process was to
capture meaningful patterns while disregarding background
elements. The annotator was instructed to prioritize visu-
ally distinctive patterns, ensuring that the labeled regions
align with natural texture variations and structural details.
No predefined criteria were imposed regarding what consti-
tutes an “important pattern,” allowing the annotator to use
their domain knowledge and perceptual judgment to deter-
mine which markings should be highlighted.

To maintain consistency and quality, the annotator: (1)
Used multiple layers to separate different patterns before
merging final labels. (2) Adjusted brush settings to refine
complex or fine-grained textures. (3) Reviewed and iter-
ated on labels to minimize subjectivity and ensure coher-
ence across different images. The labeling process aimed
to create high-quality, perceptually guided annotations that
emphasize patterns critical for segmentation, making the

dataset well-suited for fine-grained pattern extraction and
recognition tasks .

Baseline Implementation Details
K-Means Clustering.
K-Means [1, 6] clustering segments images based on color
similarity, grouping pixels into k clusters. To improve ro-
bustness, we apply K-Means only to foreground pixels, us-
ing a background mask from the rembg library to exclude
irrelevant regions. The clustering is performed in the RGB
color space using OpenCV’s implementation with 20 iter-
ations and a random initialization strategy. The resulting
pixel labels are then reshaped back to the image space,
forming k binary segmentation masks. For pattern dice
score calculation, given that k-means clustering does not
know which colors correspond to the animal pattern, both
the segmentation output and the inverse segmentation out-
put are computed, taking the better one.

Watershed Segmentation.
The Watershed algorithm [2] performs segmentation by
identifying image gradients and intensity variations. The
image is first converted to grayscale and smoothed using
Gaussian blur to reduce noise. We then apply Otsu’s thresh-
olding to separate foreground and background, followed
by morphological operations to refine segmentation bound-
aries. Markers are assigned to connected components, and
unknown regions are labeled as zero. The Watershed al-
gorithm then propagates segmentation boundaries based on
gradient flows.

Segment Anything Model (SAM).
SAM [4] generates a set of segmentation masks given by the
mask generator predefined function. To adapt SAM for
fine-grained pattern segmentation, we rank each segmenta-
tion mask by area to extract the largest and second-largest
regions. We then construct a complementary binary mask:
one containing the largest identified pattern and another in-
cluding the remaining segmentations. For our implementa-
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Figure 1. Effect of threshold ρ on Segmentation Output. A low threshold results in increased false positive pattern outputs, and a higher
threshold results in reduced true positive pattern outputs.

Figure 2. Effect of Small Threshold ρ Increments on Segmentation Output. As the threshold increases, more pattern details are lost,
leaving only the most confident patterns.

Figure 3. Effect of temperature τ on Segmentation Output. A
low temperature results in sharper segmentation outputs.

tion, we use SAM’s ViT-H model, loaded from the check-
point sam vit h 4b8939.pth. The mask generator is ini-
tialized with 64 points per side and a two-layer cropping for
finer mask quality.

CLIP-Seg.
CLIP-Seg [5] segments images based on text prompts,
aligning text and image embeddings through CLIP’s vision-
language model. Given an input image and a textual de-
scription (e.g., “pattern of animal”), CLIP-Seg generates a
probability map, which is then thresholded to obtain a bi-

nary segmentation mask. We implement CLIP-Seg using
the pretrained clipseg− rd64− refined model from Hug-
gingface transformer library, along with its corresponding
preprocessor.

DINO.
DINO [3, 7] performs self-supervised feature extraction to
generate high-level image representations. The model pro-
cesses the image through multiple transformer layers, pro-
ducing a feature map that is compressed using PCA into
three dimensions corresponding to RGB. The PCA-reduced
features are converted to grayscale, thresholded at 0.5 to ob-
tain binary masks, and refined using a background mask to
remove irrelevant regions. We use Facebook’s pretrained
dinov2 vitg14 reg model, loaded from Torch Hub.

Hyperparameter Ablation Studies
To analyze the impact of key hyperparameters on segmen-
tation performance, we conduct ablation studies on the tem-
perature parameter (τ ) and the threshold parameter (ρ).

Effects of Temperature.
The temperature parameter (τ ) in the Gumbel-Softmax
function controls the degree of discretization in the soft
assignments. When τ is high, the output distribution is
soft and continuous, leading to smoother probability maps.



When τ is low, the function closely approximates a dis-
crete one-hot assignment, resulting in sharper segmenta-
tions. However, since the final segmentation mask is ob-
tained via a separate thresholding step rather than directly
using the raw Gumbel-Softmax output, τ has a relatively
minor influence on the final binary segmentation mask. As
shown in Figure 3, lowering τ slightly increases segmenta-
tion sharpness but does not dramatically alter the final out-
put.

Effects of Threshold.
The threshold parameter (ρ) is applied after segmentation
probabilities are generated, determining the final binary
mask. It controls the strictness of pattern selection, with
higher values favoring a more conservative segmentation
that only retains pixels with high confidence. As shown in
Figure 1 and Figure 2: Low ρ (lenient threshold) leads to
more false positives, capturing more pixels as patterns but
also introducing noise. High ρ (strict threshold) results in
reduced true positives, filtering out weakly confident pixels
and potentially missing true patterns. While lower thresh-
olds may allow the model to capture more subtle textures,
they also increase the risk of including background noise.
On the other hand, higher thresholds enhance segmentation
precision but can cause over-segmentation, where only the
most confident pixels are retained, discarding faint but valid
patterns.
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