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In supplementary material, we provide more details of
our model architectures and additional results. We first
present details of our model architecture in Section A. Then
in Section B, we discuss additional experimental results.

A. Network Architecture
A.l. PointNet encoder
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Figure 1. Network architecture used for our PointNet encoder. We
use five fully-connected layers for efficiency. The number in the
box denotes the dimension of features.

As shown in Figure 1, we employ five fully-connected
layers to construct an efficient PointNet encoder. It takes the
point clouds transformed into different hand coordinate sys-
tems (e, € R778%67) and outputs 1024-dimensional global
features f;, € R'°?4 for the sparse point cloud decoder.

A.2. Dense point cloud decoder
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Figure 2. Network architecture used for reconstructing dense ob-
ject point clouds. Given the input point clouds and its correspond-
ing image features, the network performs point clouds upsam-
pling. The number in the box denotes the dimension of features.

Figure 3. Qualitative results of reconstructed object meshes pro-
duced by our approach on HO3D [7] and DexYCB [2] datasets.

Figure 2 illustrates the network architecture for recon-
structing dense object point clouds. Given input point
clouds p, € RN*3 and aligned image features f, €
RN*128 e first apply convolution layers and max pool-
ing to po, then concatenate the processed features with f,.
As discussed in the main paper, we perform the same oper-
ations for predicted hand vertices vy,, equipping each object
point with its surrounding hand context. Next, we upsam-
ple the input object point clouds via bilinear interpolation
and employ a transformer model to predict 3D offsets for
the initially upsampled object points. Our model consists of
two consecutive blocks, as shown in Figure 2, which pro-
gressively upsample sparse point clouds pf € R2%48%3 (o
dense object point clouds pd € R16384x3,

B. Experimental Results

B.1. Object mesh reconstruction results

When needed, we can easily convert our reconstructed ob-
ject point clouds into meshes. As shown in Figure 3, we
employ the alpha shapes algorithm [5], as implemented
in the Open3D library [11], to generate high-fidelity ob-
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Table 1. Comparison with previous methods on DexYCB.

Methods mesh FS@5 1 FS@10 4 CD | Cr 1 Pd |

Rl  GF[9] v 0.39 0.66 4.5 0.96 0.92
R2 AlignSDF [3] Vv 0.41 0.68 39 097 1.08
R3  gSDF [4] v 0.44 0.71 34 095 094
X
X

R4 D-SCO [6] 0.63 0.82 1.3 - -

R5 HORT (Ours) 0.63 0.85 1.1 0.98 0.90
R6 HORT (Ours) v 0.62 0.85 1.1 0.98 0.90

Table 2. Ablation studies of hand accuracy on DexYCB dataset.

Methods Noise E, | FS@Q51 FS@Q101+ CD | C; 1 Pq d

HORT (Ours) ¢ = 0.0 0.00 0.64 0.88 1.0 098 0.88
HORT (Ours) 0 = 0.1 7.67 0.60 0.85 1.3 0.96 0.93
HORT (Ours) o = 0.5 36.11 0.54 0.79 1.6 091 1.02
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Figure 4. Qualitative comparison of our reconstructed sparse and
dense object point clouds on HO3D and DexYCB datasets.

ject meshes. Table | presents our quantitative analysis of
point cloud and mesh predictions. Here, we use predicted
hand poses for different approaches on DexYCB [2] dataset.
Compared to evaluations on point clouds in R5, R6 evalu-
ates object meshes and achieves similar quantitative perfor-
mance, further demonstrating the flexibility and efficiency
of our point cloud representation. Moreover, compared to
previous methods, HORT produces more physically plausi-
ble hand-object configurations and achieves better results in
terms of Contact Ratio (Cr) and Penetration Depth (Pd).

B.2. Comparison for 3D reconstruction densities

Figure 4 qualitatively compares our reconstructed sparse
and dense object point clouds. We observe that our recon-
structed sparse and dense point clouds are consistent in the
general shape of the object. Our dense point clouds contain
more surface details for the manipulated object.

B.3. Impact of imperfect hand poses

Table 2 ablates the impact of hand accuracy to our model
by gradually adding Gaussian noise to ground-truth hand

Figure 5. Qualitative results of HORT on synthetic ObMan [8],
indoor HO3D [7] and DexYCB [2], and in-the-wild CORe50 [10]
images. Our model shows impressive results on all these domains.

Temporary consistency

Figure 6. Qualitative analysis on DexYCB datasets.

poses. As a result, the hand joint error Ej, increases from
7.67mm to 36.11mm with more noises. Our HORT model
is robust to noisy hand poses and can still reconstruct plau-
sible 3D hand-held objects.

B.4. Additional qualitative results

In this section, we present additional qualitative examples
in Figure 5 to demonstrate that our approach produces
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Figure 7. Failure cases on MOW [1] and CORe50 [10] images.

high-quality 3D reconstructions across various challeng-
ing scenes. Our model performs well on both the syn-
thetic ObMan [8] dataset and the real-world HO3D [7]
and DexYCB [2] datasets. Furthermore, we show that
our model can generate reliable predictions on in-the-
wild CORe50 [10] images, highlighting the ability of our
HORT model to effectively generalize to diverse object in-
stances and textures in unconstrained environments. Fig-
ure 6 demonstrates that our reconstructed results are tem-
porally consistent and robust to hand occlusion.

B.5. Failure cases analysis

While HORT achieves impressive qualitative results, it
struggles to accurately infer hand-object configurations
when the hand is heavily occluded (Figure 7, top) and to re-
cover fine-grained geometry for rare objects (Figure 7, bot-
tom). Scaling training data with a broader range of objects
and grasping poses could help mitigate these limitations.
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