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In this Supplementary Material, we provide additional
experiments, visualization, and illustration to better evalu-
ate our method.

S1. Additional Experiments

Projector for Feature Alignment. We conduct experi-
ments to investigate how the number of transformer blocks
in the projector affects performance. As shown in Tab. S1,
when the number of blocks is set to 3, our method achieves
the best performance, suggesting that increasing the num-
ber of blocks in the projector improves the effect of feature
alignment. However, excessive complexity in the projector
can negatively affect performance.

Table S1. Ablation study on the number of blocks in the projector.

Number of Blocks ScanObjectNN
1 88.34
2 88.75
3 90.08
4 89.03

Only Fine-tuning Prediction Head. To make a fair com-
parison with the previous methods, we fine-tune both the
backbone and the prediction head in our main experiments.
Additionally, freezing the entire 3D backbone and updating
only the prediction head can help improve the fine-tuning
efficiency, so we conduct experiments and report them in
Tab. S2.

As shown in Tab. S2, under this configuration, Point-
BERT and our method achieve 81.64% and 85.46% accu-
racy, respectively, each requiring one hour of fine-tuning.
This approach saves an hour compared to fine-tuning the
entire backbone, although it also leads to some performance
degradation.

†Correspondence author.

Table S2. Ablation study on fine-tuning strategies. Time (h)
refers to fine-tuning time on the PB-T50-RS setting using a sin-
gle NVIDIA RTX 4090 GPU.

Method Fine-tuning Whole Backbone Fine-tuning Prediction Head
Time Accuracy Time Accuracy

Point-BERT [7] 2.0 83.07 1.0 81.64
Ours 2.0 90.08 1.0 85.46

Deploying a Pre-trained Encoder in the First Stage. To
verify whether deploying a pre-trained model in the first
stage effectively improves performance, we conduct exper-
iments by loading the Point-BERT weights.

From the results in Tab. S3, loading the Point-BERT
weights in the first stage yields only slight improvement, as
this stage primarily serves to construct the point-to-image
framework rather than optimize 3D representations.

Table S3. Ablation study on deploying a pre-trained encoder in the
first stage.

Method ScanObjectNN
OBJ-BG OBJ-ONLY PB-T50-RS

Point-BERT [7] 87.43 88.12 83.07
Ours 95.18 93.63 90.08
Ours+Point-BERT 95.35 93.63 90.15

Evaluation on Outdoor Datasets. We conduct addi-
tional experiments on SemanticKITTI [1] with a SparseC-
onvNet [2] backbone to evaluate our method on outdoor Li-
DAR datasets.

As shown in Tab. S4, our method improves the baseline
performance from 68.6% to 69.5% mIoU, demonstrating its
effectiveness in real-world outdoor scenarios.
Integration with 3D Intra-modal Self-supervised Loss.
Our method adopts only a cross-modal alignment loss,
while methods like I2P-MAE [9] and ReCon [3] incorpo-
rate both intra-modal and inter-modal self-supervision. This
difference in supervision may explain the performance vari-

1



Table S4. Semantic segmentation results on the SemanticKITTI
dataset measured by mIOU (%).

Method SemanticKITTI
SparseConvNet [2] 68.6
Ours 69.5

Table S5. Classification accuracy (%) on the three subsets of the
ScanObjectNN dataset and ModelNet40 dataset.

Method ScanObjectNN ModelNet40OBJ-BG OBJ-ONLY PB-T50-RS
Point-BERT [7] 87.43 88.12 83.07 92.7
Point-FEMAE [8] 95.18 93.29 90.22 94.0
ReCon [3] 95.18 93.63 90.63 94.0
Ours 95.18 93.63 90.08 93.7
Ours+Point-BERT 95.53 93.98 90.67 93.9

ation observed on some datasets.
To test this hypothesis, we integrate the Point-BERT 3D

intra-modal loss into our method in the second stage. As
shown in Tab. S5, this single-modal self-supervision helps
PointSD further improve its performance.

S2. Visualization and Illustration
Visualization of Point-to-image Generation. As shown in
Fig. S1, we visualize the point cloud and the corresponding
rendered image in the left two columns, respectively, and
the results generated with different seeds are shown in the
five right columns. From top to bottom, the point clouds in
the third and sixth rows are generated by mixing the point
clouds from rows 1 and 2, and rows 4 and 5, respectively.
The results demonstrate that our point-to-image framework
can generate the corresponding images with point clouds as
the condition, enabling us to extract SD features containing
semantics.

Figure S1. Visualization of point-to-image generation results.

t-SNE Visualization of Features from 3D Backbone. In

Figure S2. t-SNE visualization on ModelNet40 and ScanOb-
jectNN PB-T50-RS datasets.

Fig. S2, we achieve t-SNE [5] visualization on the fea-
ture distribution extracted by our pre-trained and fine-tuned
models on ModelNet40 [6] and ScanObjectNN PB-T50-
RS [4] datasets. The results show that 1) Our pre-trained
models can extract discriminative features on the Model-
Net40 dataset without fine-tuning. 2) Our fine-tuned mod-
els can yield more discriminative features on both datasets.
3) ScanObjectNN PB-T50-RS is a real-world dataset con-
taining background noise, while our model is pre-trained
on synthetic data, making it harder for the model to sep-
arate different classes of samples in feature space without
fine-tuning.

Illustration of the Augmentation Strategy. We show our

Figure S3. Illustration of augmented training samples construc-
tion.

augmentation strategy in Fig. S3. Given two point cloud
samples, we first divide them into a series of patches re-
spectively and then mask out part of them to mix. For the
corresponding two image samples, we stitch them along the
width directly. This augmentation strategy aids in learning
more robust 3D representations.
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