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1. More Detailed Derivation
Theorem 1 (KL Divergence Comparison between models)
For the teacher model and the student model within the LIC
framework described above, let M1 denote the stage-wise
method, M2 denote the joint training method, Ji denote the
absolute determinant value of the Jacobian Matrix of each
block, PT (y) = P (yT |Θa), and PS(y) = P (yS |Ψa).
Assume the following:
1. Each block is differentiable and invertible.
2. Regardless of how the student model is trained, each

J−1
i follows an invariant distribution with fixed mean

and variance, and is an unbiased estimator of the target
teacher model’s block.

3. EM2
[
∏3

i=1(J
−1
i )2] ≥

∏
i=1 EM1

(J−1
i )2.

4. EM2 [
∏3

i=1 J
−1
i ] ≤

∏3
i=1 EM1J

−1
i .

We can interpret Assumptions 3 and 4 as, in joint training,
dependencies increase each block’s co-movement in magni-
tudes but do not increase the absolute mean of each block’s
product.

Then, we state that:

DKL(PT (y)∥PS(y))M1 < DKL(PT (y)∥PS(y))M2 .

Proof First, we have:

J−1
T := (JT

1 JT
2 JT

3 )−1, J−1
S := (JS

1 J
S
2 J

S
3 )

−1.

Thus:

PT (y) = P (x) · J−1
T , PS(y) = P (x) · J−1

S .

The KL divergence between the teacher and student latent
distributions is defined as:

DKL(PT ∥PS) = EPT

[
log

PT (y)

PS(y)

]
= EPT

[
log

P (x) · J−1
T

P (x) · J−1
S

]
= EPT

[
log

J−1
T

J−1
S

]
= −EPT

[
log J−1

S

]
+ log J−1

T ,
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We perform a second-order Taylor expansion of log(J−1
S )

around the deterministic Jacobian J−1
T :

log(J−1
S ) ≈ log(J−1

T ) +
1

J−1
T

(J−1
S − J−1

T )−

1

2(J−1
T )2

(J−1
S − J−1

T )2.

Taking expectations under PT :

EPT
[log(J−1

S )] ≈ log(J−1
T ) +

1

J−1
T

EPT
[J−1

S − J−1
T ]

− 1

2(J−1
T )2

EPT
[(J−1

S − J−1
T )2].

Since we assume that on average the student training is
unbiased around the teacher distribution, we have:

EPT
[J−1

S − J−1
T ] = 0.

Thus, the expectation simplifies clearly to:

EPT
[log(J−1

S )] ≈ log(J−1
T )− 1

2(J−1
T )2

Var(J−1
S ).

Substitute back into the original KL expression:

DKL(PT ∥PS) = −EPT
[log(J−1

S )] + log(J−1
T )

≈ −
(
log(J−1

T )− 1

2(J−1
T )2

Var(J−1
S )

)
+ log(J−1

T ).

The log(J−1
T ) terms cancel neatly, giving explicitly:

DKL(PT ∥PS) ≈
Var(J−1

S )

2(J−1
T )2

.

Thus:

DKL(PT ∥PS)M2

DKL(PT ∥PS)M1

=
Var(J−1

S )M2

Var(J−1
S )M1

≥ 1 (Assumption 3 and 4),
(1)

which completes the proof.
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Figure 1. RD curves of MS-SSIM on CLIC dataset.

2. RD-Curve or MS-SSIM
As shown in Fig. 1, we provide more RD curves about MS-
SSIM on the CLIC dataset. We compare our KDIC model
with VTM-21.0 [1], FTIC [2] and TCM [3].

3. Settings of VTM-21.0
We utilize VTM-21.0 [1] and demonstrate sample bash com-
mands for encoding and decoding a YUV format image with
VTM-21.0.

VTM− 2 1 . 0 / b i n / E n c o d e r A p p S t a t i c − i tmp .
yuv −c VTM− 2 1 . 0 / c f g /
e n c o d e r i n t r a v t m . c f g −q 61 −o / dev /
n u l l −b tmp . b i n −wdt 768 − h g t 512 −
f r 1 − f 1 −−InputChromaFormat =444 −−
I n p u t B i t D e p t h =8 −−
ConformanceWindowMode=1

VTM− 2 1 . 0 / b i n / D e c o d e r A p p S t a t i c −b tmp .
b i n −o tmp . yuv −d 8
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