
Learning Robust Image Watermarking with Lossless Cover Recovery

Supplementary Material

Table 3. Comparison of SSIM and PSNR (mean ± standard de-
viation) for the proposed methods with watermark lengths of 144
bits and 64 bits. Results are reported for non-recoverable (†) and
cover-recoverable (†) variants. The best SSIM and PSNR values
are highlighted in bold.

Method SSIM PSNR
144† 0.9989 ± 0.0008 37.03 ± 0.86
144-R† 0.9988 ± 0.0008 36.97 ± 0.88
64† 0.9995 ± 0.0005 40.95 ± 1.24

64-R† 0.9995 ± 0.0005 40.90 ± 1.23

A. Up/Down-Sampling Network Architecture
In the CRMark framework, due to the significant dimen-
sional differences between images and watermarks, the net-
work architectures for Ui(·), Qi(·), and Si(·) within the in-
teger coupling layer are different, specifically, Ui(·) is de-
signed as an up-sampling network, while Qi(·) and Si(·)
serve as down-sampling networks, with their architectures
illustrated in Fig. 9, we symmetrically design the symmet-
ric up/down-sampling networks. Each network comprises
an initial convolutional layer, multiple sampling blocks, and
a final convolutional layer. Taking the down-sampling net-
work as an example, the input features first undergo ini-
tial convolution, followed by processing through multiple
sampling blocks, and conclude with a final convolutional
layer to produce the extracted watermark features. Each
sampling block incorporates a spatial attention module, re-
ducing the spatial resolution of the features by half while
increasing the number of feature channels by Nf . Con-
versely, the up-sampling network reconstructs the image
from the watermark feature map. Through a combination
of transposed convolutions, spatial attention, and convolu-
tional layers, each block doubles the spatial resolution and
symmetrically reduces the number of channels, with the fi-
nal convolutional layer restoring the image.

B. Embedding More Watermark Bits
We evaluate CRMark with 64-bit and 144-bit embeddings
in terms of visual quality, robustness, and auxiliary bit-
stream length. Fig. 10 shows the visual comparison. Ac-
cording to Tab. 3, 64-bit CRMark achieves an SSIM of
0.9995±0.0005 and a PSNR of 40.95±1.24 dB. CRMark-
R performs similarly. In contrast, 144-bit CRMark and
CRMark-R reach SSIMs of 0.9989± 0.0008 and 0.9988±
0.0008, and PSNRs of 37.03 ± 0.86 and 36.97 ± 0.88 dB,
respectively. The 144-bit variant drops by 3.92 dB in PSNR
and 0.0006 in SSIM. Experiments reveal that increasing ca-
pacity degrades image quality.

144 64
z

400

600

800

bi
ts

144 64
overflow map

101

102

103

104

bi
ts

144 64
total

101

102

103

104

bi
ts

Figure 8. Comparisons of auxiliary bitstream lengths for 64-
bit and 144-bit CRMark demonstrate that the auxiliary bitstream
length increases with the embedding capacity.

Moreover, we evaluate the robustness of 64-bit CRMark
and 144-bit CRMark under distortions shown in Tab. 4.
Under JPEG compression (Qf = 50), 64-bit CRMark
achieves 99.27%, 64-bit CRMark-R reaches 99.31%, 144-
bit CRMark hits 98.99%, and 144-bit CRMark-R scores
99.04%. For Gaussian blur (σ = 7.0), 64-bit CRMark
obtains 93.87%, 64-bit CRMark-R gets 93.83%, 144-bit
CRMark drops to 76.03%, and 144-bit CRMark-R reaches
76.12%. Under S&P noise (p = 0.7), 64-bit CRMark
achieves 95.53%, 64-bit CRMark-R scores 95.88%, 144-
bit CRMark records 85.73%, and 144-bit CRMark-R hits
85.80%. We note that 64-bit variants outperform 144-bit
ones. Although capacity rises to 144 bits, there is only a
slight decline compared to 64 bits.

We examine the auxiliary bitstream lengths for 64-bit
and 144-bit watermarks in CRMark. Fig. 8 shows the re-
sults. We observe that the latent variable z of the 64-bit CR-
Mark watermark averages 382.61 bits. Its overflow map av-
erages 1558.58 bits. The total length reaches 1962.19 bits.
We found that the latent variable z of the 144-bit CRMark
watermark averages 782.84 bits. Its overflow map averages
4199.10 bits. The total length amounts to 5002.94 bits. The
144-bit CRMark bitstream surpasses the 64-bit CRMark by
2.5 times. We conclude that a higher watermark capacity
increases auxiliary bitstream length. Nevertheless, all test
images are successfully embedded by 144-bit CRMark.



Sigmoid

Spatial Attention

×

(𝑵𝒇 ×𝑯 ×𝑾)

(𝑵𝒇 × 4 × 𝑯/8 ×𝑾/8)

(𝑵𝒇 × 3 × 𝑯/4 ×𝑾/4)

(𝑵𝒇 × 2 × 𝑯/𝟐 ×𝑾/𝟐)

Sampling Block

Conv

Conv /ConvTrans

Init/Final Conv Init/Final Conv

(𝑵𝒇 ×𝑯 ×𝑾)

(𝑵𝒇 × 2 × 𝑯/𝟐 ×𝑾/𝟐)

(𝑵𝒇 × 3 × 𝑯/4 ×𝑾/4)
(𝑵𝒇 × 4 × 𝑯/8 ×𝑾/8)

(𝑵𝒇 ×𝑯 ×𝑾)
(𝑵𝒇 ×𝑯 ×𝑾)(𝑵𝒇 ×𝑯 ×𝑾)

(𝑵𝒇 × 2 × 𝑯/𝟐 ×𝑾/𝟐)

(𝑵𝒇 × 3 × 𝑯/4 ×𝑾/4)

(𝑵𝒇 × 4 × 𝑯/8 ×𝑾/8)
(𝑳 × 𝑳) (𝑳 × 𝑳)

Down-Sampling Block Up-Sampling Block

Spatial Attention Module

Conv2D ConvTrans

Down-Sampling Network Up-Sampling Network

Figure 9. The architecture of the up-sampling and down-sampling networks in the proposed CRMark. The up-sampling and down-sampling
networks are symmetric, each consisting of an initial convolution, multiple sampling blocks, and a final convolution.

14
4

Cover Stego
Jpeg Compression

Qf = 90
Salt&Pepper Noise

p = 0.7
Gaussian Noise

= 0.25
Gaussian Blur

= 7.0
Median Filter

w = 15
Dropout
p = 0.7

14
4-

R
64

-R
64

Figure 10. Visual comparison of stego images generated by 64-bit and 144-bit CRMark.

Table 4. Extraction accuracy (%) of the proposed CRMark variants embedding watermarks of lengths 64 and 144 (denoted as 64, 144)
under various distortions. Here, † indicates cover-recoverable watermark methods, while † denotes non-recoverable ones.

Methods JPEG(Qf ) Gaussian Blur(σ) Gaussian Noise(σ)
50 70 90 5.0 6.0 7.0 0.05 0.15 0.25

144† 98.99 99.26 99.31 99.01 94.91 76.03 99.37 98.52 92.92
144-R† 99.04 99.15 99.44 99.26 94.96 76.12 99.28 98.30 93.50
64† 99.27 100.0 100.0 98.70 97.11 93.87 100.0 97.59 88.87

64-R† 99.31 100.0 100.0 98.77 97.00 93.83 100.0 97.56 89.16

Methods S&P(p) Dropout(p) Median Filter(w)
0.3 0.5 0.7 0.3 0.5 0.7 11 13 15

144† 97.94 95.77 85.73 98.72 97.02 93.21 98.81 98.21 95.81
144-R† 98.01 95.70 85.80 98.66 96.98 93.37 98.84 97.89 96.03
64† 99.86 99.06 95.53 99.98 97.75 92.35 99.41 98.83 97.52

64-R† 99.85 99.28 95.88 99.99 97.68 92.40 99.39 98.77 97.61



X O X O X O

O X O X O X

X O X O X O

O X O X O X

X O X O X O

O X O X O X

𝑒1 𝑒2 𝑒1 𝑒2

shifting

𝑒1 𝑒2

embedding

O O O

O O O

O O O

O O O

O O O

O O O

X X X

X X X

X X X

X X X

X X X

X X X
𝐌x𝐌o

Figure 11. Illustration of the checkerboard masks Mo and Mx for
pixel grouping in PEE-based embedding.

C. Attack Detection
CRMark leverages the SHA-256 cryptographic hash func-
tion to provide a reliable authentication mechanism. During
the second embedding stage, the 256-bit hash of the origi-
nal cover image is encoded and embedded into the clipped
stego image along with other auxiliary information using
RDH. Upon recovery, the hash of the reconstructed image is
recomputed and compared to the embedded one. Any mis-
match between the two indicates that the image has been
altered or attacked. Thanks to the avalanche effect of SHA-
256, where even a single-pixel change results in a com-
pletely different hash, CRMark can detect both seen and
unseen attacks with high sensitivity. This makes it a robust
solution for integrity verification in real-world applications.
Moreover, the length of the 256-bit hash is small compared
to the overall size of the merged auxiliary bitstream, making
it negligible in terms of RDH capacity consumption. There-
fore, no significant performance trade-off is introduced.

D. Reversible Data Hiding
CRMark employs a prediction-error expansion (PEE)
method [6] in the second stage to achieve reversible em-
bedding of auxiliary bitstreams. Compared to traditional
histogram shifting techniques, this method offers a larger
embedding capacity. The detailed procedure is as follows.

D.1. Embedding
Let I ∈ {0, 1, . . . , 255}H×W×C denote the original im-
age to be embedded. The image is divided into two dis-
joint pixel sets, indicated by binary masks Mo,Mx ∈
{0, 1}H×W×C . A checkerboard-like pattern is typically
used for these masks, as illustrated in Fig. 11.

First, watermark bits are embedded into the pixel posi-
tions marked by Mx. We extract Io = I⊙Mo and use it as
input to a predictor P(·) to estimate the pixel values at Mx,
resulting in Îx = P(Io). Then, we extract Ix = I⊙Mx and
compute the prediction error as Ierror

x = Îx − Ix. We collect
the prediction errors at Mx and construct a histogram, as
shown in Fig. 12. Two peak values e1 and e2 are selected
from the histogram, where e1 < e2. The pixel values are
then shifted as follows: pixels with errors less than e1 are

X O X O X O

O X O X O X

X O X O X O

O X O X O X

X O X O X O

O X O X O X

𝑒1 𝑒2

𝑒1 𝑒2 𝑒1 𝑒2

shifting

𝑒1 𝑒2

embedding

Figure 12. Histogram shifting based reversible data hiding.

decremented by one, while those with errors greater than e2
are incremented by one. This creates two empty bins be-
tween e1 and e2, as illustrated in Fig. 12. For pixels with
prediction errors equal to e1 or e2, a single watermark bit
w ∈ {0, 1} is embedded by updating their pixel values as:
pe1 = pe1 − w and pe2 = pe2 + w, where pe1 and pe2
represent the pixel values corresponding to prediction errors
e1 and e2, respectively. After embedding, the stego image
Istego

x corresponding to Ix is obtained.
Next, we embed watermark bits into Io using Istego

x as
input to the predictor, yielding Îo = P(Istego

x ). The pre-
diction error is computed as Ierror

o = Îo − Io, and the same
histogram-shifting-based embedding process is applied to
Io. To ensure reversibility, auxiliary information such as
the peak values e1, e2, and overflow locations must be em-
bedded. This information is compressed using arithmetic
coding [5] and subsequently embedded into the least signif-
icant bits (LSBs) of the first few rows of the original im-
age I. The original LSBs of I are preserved using the PEE
method described above, enabling lossless recovery.

D.2. Extraction

To extract the embedded watermark and recover the original
image I, we first retrieve the compressed auxiliary informa-
tion from the least significant bits (LSBs) of the first few
rows of the stego image Istego. This data includes the his-
togram peak values e1 and e2, overflow locations, and other
metadata necessary for reversibility.

Then, the stego image Istego is divided into two disjoint
pixel sets using checkerboard masks Mo and Mx, resulting
in Istego

x = Istego ⊙Mx and Io = Istego ⊙Mo. We use Istego
x

as input to the predictor P(·) to estimate the pixel values
at positions marked by Mo, yielding Îo = P(Istego

x ), and
compute the prediction error Ierror

o = Îo − Io. Based on
the known peak values e1 and e2, we analyze the prediction
errors to extract the embedded watermark bit w. When a
pixel’s error falls near e1 or e2, it indicates that a watermark
bit was embedded. Specifically, by identifying whether the
error corresponds to e1, e1 − 1, e2, or e2 + 1, we determine
the value of w as either 0 or 1. After extracting the water-
mark, we restore the histogram to its original state to ensure
lossless reconstruction. Pixels with an error of e1 − 1 are
incremented by one, and those with an error of e2 + 1 are
decremented by one, returning all modified pixels to their



0 100 200 300 400 500 600
Epochs

0

2500

5000

7500

10000
w

0
102

104

106

Figure 13. Curves of λw over training epochs for different λp,
demonstrating its automatic adjustment and convergence.

pre-embedding values. Next, we reconstruct the pixel val-
ues at positions marked by Mx. Using the recovered Io as
input, we generate Îx = P(Io) and compute the prediction
error Ierror

x = Îx − Istego
x . Based on the known e1 and e2,

we apply the inverse of the histogram-shifting operation to
revert Istego

x back to its original form.
Finally, to achieve full lossless recovery, we also restore

the LSBs of the original image that were used to embed the
auxiliary information. During embedding, the original LSB
values were preserved using the PEE method and encoded
into the auxiliary bitstream. In extraction, these values are
retrieved and used to restore the LSB layer to its original
state. This completes the reversible extraction process, al-
lowing both the watermark and the original image to be per-
fectly recovered without any distortion.

Based on the above processes, we can observe that the
embedding capacity depends on the distribution of predic-
tion errors. More accurate prediction leads to a more con-
centrated error distribution, resulting in higher histogram
peaks and thus increased embedding capacity. Therefore,
employing a better predictor P(·), such as a CNN-based
model [1, 2], can improve overall performance.

E. How to train CRMark?
During training, different loss terms usually require careful
weighting to stabilize the optimization process. However, in
training CRMark, we found that the overflow penalty term
often requires a relatively large loss of weight to constrain
pixel overflow effectively. This leads to a problem: if the
weight of the watermark loss is too small, the watermark
may fail to embed; if it is too large, excessive distortion in
the stego image can occur. To address this issue, we propose
a dynamic loss weight adjustment strategy.

In watermarking tasks, the primary goal is to embed the
watermark and accurately extract it, while preserving im-
age quality. Importantly, watermark extraction accuracy is
often prioritized over image imperceptibility during train-
ing. Therefore, can we adjust the watermark loss weight to
gradually balance the watermark extraction accuracy and
imperceptibility by fixing the weights of other losses? We
consider this idea is feasible. Specifically, we initialize the

watermark loss weight with a large value and adaptively ad-
just it based on extraction accuracy over recent epochs.

Let A = [at−n, . . . , at] denote the extraction accuracies
from epoch t − n to t. The average accuracy is computed
as:

acc =
1

n

t∑
i=t−n

A(i),

where n is the average window size, when acc exceeds a
target threshold or the extraction error falls below a preset
tolerance δ, it indicates stable watermark embedding under
the current weight λt

w. We then reduce the weight to en-
hance image quality:

λt+1
w = λt

w × v, if acc > 1− δ,

where δ ∈ (0, 1) is the tolerable error, and v ∈ (0, 1) is
a discount factor. This adaptive adjustment stabilizes train-
ing and facilitates a progressive balance between watermark
robustness and image quality. Fig. 13 shows the variation
of the watermark loss weight under different penalty loss
weights. It can be observed that as the number of epochs
increases, the watermark loss weight gradually decreases
and eventually converges.

F. Limitations and Discussions
While CRMark achieves better performance than STDM [3]
and PZM [4] in terms of computational efficiency, auxiliary
bitstream length, visual quality, and general robustness, it
still has limitations. One major drawback is its lack of ro-
bustness to geometric distortion, especially image rotation.
In contrast, STDM [3] and PZM [4] are more resilient to
such attacks. Therefore, a promising direction for future
work is to improve CRMark’s resistance to geometric trans-
formations. In addition, although CRMark supports em-
bedding more watermark bits, an interesting question re-
mains: Can the embedding capacity be further increased
by integrating integer flow-based lossless compression tech-
niques? For example, achieving reversible image-in-image
hiding could open up an interesting research direction.

References
[1] Ruohan Hu and Shijun Xiang. Reversible data hid-

ing by using cnn prediction and adaptive embedding.
IEEE Trans. Pattern Anal. Mach. Intell., 44(12):10196–
10208, 2021. 4

[2] Ruohan Hu and Shijun Xiang. Cnn prediction based
reversible data hiding. IEEE Signal Process. Lett.,
28:464–468, 2021. 4

[3] Yichao Tang, Chuntao Wang, Shijun Xiang, and
Yiu-ming Cheung. A robust reversible watermarking
scheme using attack-simulation-based adaptive normal-
ization and embedding. IEEE Trans. Inf. Forensics Se-
cur., 33(4):1593–1609, 2024. 4



[4] Yichao Tang, Shuai Wang, Chuntao Wang, Shijun Xi-
ang, and Yiu-ming Cheung. A highly robust reversible
watermarking scheme using embedding optimization
and rounded error compensation. IEEE Trans. Circuits
Syst. Video Technol., 33(4):1593–1609, 2022. 4

[5] Ian H Witten, Radford M Neal, and John G Cleary.
Arithmetic coding for data compression. Commun.
ACM, 30(6):520–540, 1987. 3

[6] Vasiliy Sachnev, Hyoung Joong Kim, Jeho Nam, Sun-
daram Suresh, and Yun Qing Shi. Reversible water-
marking algorithm using sorting and prediction. IEEE
Trans. Circuits Syst. Video Technol., 19(7):989–999,
2009. 3


