
Leveraging Debiased Cross-modal Attention Maps and Code-based Reasoning
for Zero-shot Referring Expression Comprehension

Supplementary Material

Models Venue Cops-Ref
val test

Supervised SOTA
CM-Att-Erase [35] CVPR20 - 80.40

Other zero-shot method
ReCLIP [56] ACL22 30.50 30.75
FGVP [67] NIPS23 30.87 30.97
GDINO-T [34] ECCV24 56.87 59.37
GVLP w/ ALBEF [49] AAAI24 36.27 37.64

Ours
GDINO-T w/ ALBEF - 60.33 62.60
GDINO-T w/ BEiT-3-vqa - 61.98 64.25

Table 6. Comparisons with state-of-the-art methods on the val
and test set of Cops-Ref. Best and second best performance for
zero-shot methods are in bold and underline, respectively.

7. Details of Program Generation and Execu-
tion

During the generation process, for each query, we fill the
full-query description, the name of the referring subject, and
those of other objects parsed by the LLM into the part of in-
put of the prompt template, described in Sec. 12, thereby
forming a complete prompt. We then configure the LLM
and input the prompt. Typically, the LLM can correctly un-
derstand the output format requirements and returns a single
code block wrapped with ‘‘‘python and ‘‘‘ . The block
defines a function with fixed name reason and parameters
Subject and Objects, identical to the examples in Sec. 12.

During the execution process, we first use the built-
in python regular expression to extract the string of the
code block, in case the LLM does not strictly follow
the prompt and outputs additional non-code information.
We then use the built-in exec(string) function to define
the reason(Subject, Object) function within an isolated
namespace. Finally, within this namespace, we can dynam-
ically invoke the function by its name using a variable call,
passing in ”reason” as the function name along with the cor-
responding Subject and Object detection results as param-
eters. This enables automatic execution of the generated
program.

8. Additional Experiment Results
Experiments on Cops-Ref dataset. We report additional
evaluation results on the recent and semantically rich Cops-
Ref dataset [9], which is specifically designed to benchmark
models on multi-hop reasoning, complex queries involving

Model for Mv-bias RefCOCO RefCOCO+ RefCOCOg RefIt

w/o debias 60.03 53.11 63.41 51.59
ALBEF 64.50 57.62 65.64 54.50
DINOv2-L 62.93 53.61 63.62 52.07
MAE-H 62.65 55.35 64.05 52.42

Table 7. Comparison on using different models to obtain
Mv-bias. “RefIt” represents “ReferItGame”.

Attention Map RefCOCO RefCOCO+ RefCOCOg RefIt

Using BEiT-3-vqa
Mori 70.49 65.05 70.42 57.32
M+

debias 71.75 66.65 71.60 58.34
M+

debias-l 70.75 63.71 63.20 57.24
Average 72.08 65.63 63.75 58.42

Using ALBEF
Mori 60.02 53.11 63.41 51.59
M+

debias 64.50 57.62 65.64 54.50
M+

debias-l 62.82 52.78 62.82 52.08
Average 64.34 55.29 64.35 54.02

Table 8. Comparison on using attention maps from differ-
ent debiasing strategies across two VLMs. “RefIt” represents
“ReferItGame”. “Average” means we use the mean value of
M+

debias and M+
debias-l as the final attention map.

Reasoning RefCOCO RefCOCO+ RefCOCOg RefItFormulation

Using BEiT-3-vqa
full 71.75 66.65 71.60 58.34
w/o rel. decompose 70.02 66.14 68.81 56.64
w/o discrimination 66.69 57.88 53.79 57.86

Using ALBEF
full 64.50 57.62 65.64 54.50
w/o rel. decompose 61.82 56.98 62.42 52.88
w/o discrimination 59.26 49.34 48.71 54.44

Table 9. Comparison on different designs of the general rea-
soning formulation. “RefIt” represents “ReferItGame”.

logical operators (e.g., “and”, “or”, “same”, “not”) and ordi-
nal relations (e.g., “first”). In comparison to the RefCOCO
series, Cops-Ref features longer queries and a wider variety
of categories, attributes, and relations.

The results in Tab. 6 indicate that our method consis-
tently outperforms prior models on the Cops-Ref dataset. It
also shows the flexibility of our approach, which, by lever-
aging language-based OVDs, can generalize across diverse
datasets without requiring dataset-specific training for ob-
ject detectors.



Experiments on using vision-only models for visual bias.
We also experiment with an alternative approach to obtain-
ing the visual bias Mv-bias, where it no longer derives from
the VLMs with purely visual input, but instead from vision-
only models such as DINOv2 [42] or MAE [20]. We antic-
ipate that these models could provide more accurate object-
centric semantic activations.

However, as shown in Tab. 7, under the same setting
where Mori is obtained from ALBEF, although Mv-bias
from vision-only models also contributes to the subsequent
debiasing process, its effectiveness is inferior to directly
leveraging the visual bias from the VLM. We attribute this
to the inherent characteristics of multi-modal models: while
vision-only models may highlight the most visually salient
regions, there still exists a semantic discrepancy between
these regions and those implicitly activated by VLMs in the
absence of textual input. We believe this is a promising di-
rection for future investigation.
Effect of debiasing strategies. We conduct experiments
to explore different debiasing strategies as the alternatives
of removing bias towards visual modality in Sec. 3.2. We
take the possible bias towards language modality into con-
sideration. Specifically, we input the original text query and
the masked image into the VLM to obtain the attention map
of the language bias Ml-bias. We then obtain the language-
debiased attention map Mdebias-l by computing their differ-
ence similar to Eq. (3), followed by filtering negative val-
ues to get M+

debias-l. We compare the results of combining
M+

debias-l, M
+
debias and using them separately.

The results, presented in Tab. 8, shows that in compar-
ison to using the vanilla map, debiasing for the language
modality brings performance improvements in RefCOCO
and ReferItGame while leads to performance declines in
RefCOCO+ and RefCOCOg. We argue that it might be at-
tributed to the spatial descriptions included in RefCOCO
and ReferItGame, where the VLMs struggle to understand
them in visual modality and tend to rely on the language
modality to make predictions. Overall, its performance is
inferior to that of debiasing only for the visual modality.
When simply using their average as the final attention map,
we observe a performance gain on RefCOCO and Refer-
ItGame for BEiT-3-vqa while a slight decrease for ALBEF.
These differences underscores the importance of delving
into the causes of the bias and exploring more advanced
debiasing approaches.
Effect of designs of the general reasoning formulation.
We compare the performance of some variants of our de-
signed reasoning formulation. As shown in Tab. 9, the ab-
sence of relation decomposition increases the difficulty for
LLMs to comprehend complex relations and exacerbates
the impact of small errors on the entire program, resulting in
a clear accuracy drop. It emphasizes the importance of for-
mulating the reasoning process in a general pattern and de-

LLM RefCOCO RefCOCO+ RefCOCOg

Qwen-plus 0.05% 0.16% 0.22%
GPT-4o-mini 0.15% 0.17% 0.26%

Qwen2.5-Coder-32B 0.13% 0.10% 0.12%
Qwen2.5-Coder-14B 0.03% 0.08% 0.10%

Table 10. Proportion of suspect programs containing hard-
matching function.

composing the understanding of complex queries into com-
binations of simpler ones, which enhances the explainabil-
ity and robustness of the program. Another variant with-
out discrimination of different kinds of proposals takes all
detected proposals instead of referring subjects’ proposals
P sub as the input of the reasoning program. It can be ob-
served that this setting undoubtedly increase the difficulty
of further reasoning due to irrelevant proposals. Perfor-
mance on all datasets exhibit declines, particularly on the
RefCOCOg dataset, which features longer text queries with
more object names.

9. Further Analysis of Generated Programs

To generate soft matching functions and reduce the possible
”hard-coding” caused by the hallucination of LLMs, some
prompting strategies are adopted to guide LLMs in adhering
to the principle of scoring based on the degree of matching.
First, we explicitly instruct LLMs to reason based on the
degree of matching instead of directly returning a predicted
proposal. Second, as shown in Sec. 12, continuous match-
ing and score smoothing are used throughout all in-context
examples.

We also conduct a statistical experiment based on syn-
tactic parsing to find possible hard matching functions. To
be specific, if any comparison operator is present in a gen-
erated program and one of its operands is a constant, we
label it as a suspicious ’hard-coding’ instance. Results in
Tab. 10 demonstrate that very few programs may perform
hard matching. To generate more robust and flexible spatial
reasoning programs, it may be worthwhile to explore the us-
age of more powerful LLMs and build up a close-loop code
generation system with feedback and iterative refinement.

10. Descriptions of Utilized Models

10.1. Open-Vocabulary Detectors
GLIP. GLIP [29] is a language-guided detector reformulat-
ing detection as phrase-region matching. It performs early
fusion of multi-modal features and is trained for phrase-
region alignment. This design allows arbitrary text and
image as input to locate corresponding regions. We use
its GLIP-T (C) checkpoint pretrained on O365 and GoldG
datasets (COCO images excluded). The detection threshold



for filtering proposals is set to 0.4, while other settings are
kept the same as default.
GDINO (GroundingDINO). GDINO [34] is a a dual-tower
detector combining a Swin-Transformer [37] image back-
bone with a BERT-base text encoder [13]. It features per-
forming cross-modal fusion at all stages and using sub-
sentence for text feature representation. It also differs by
leveraging a cross-modal decoder to computes text-proposal
similarity via cross-attention. We use the public available
GDINO-T-OGC checkpoint pretrained on O365,GoldG and
Cap4M datasets (COCO images excluded) with a Swin-T
backbone. We set the detection threshold to 0.2, while other
settings are kept the same as default.

10.2. Vision Language Models
ALBEF. ALBEF [28] is a representative of the first
paradigm of cross-modal fusion mentioned in Sec. 3.2. It
employs cross-attention mechanisms for cross-modal fu-
sion, where the output features of the image encoder in-
teract with the features from last 6th layers of the text en-
coder (these 6th layers serve as the multi-modal encoder).
[28, 49, 56]. In our experiments, we use the versions of
ALBEF-14M and its corresponding vqa checkpoints. The
3rd layer of the multi-modal encoder is chosen to obtain
the cross-modal attention maps in consistent with previous
GradCAM-based methods.
TCL. TCL [65] improves ALBEF by integrating three con-
trastive modules to enhance the global-local fine-grained
alignment within each modality as well as between two
modalities. It also uses cross-attention to perform cross-
modal fusion. We use its public available TCL-4M check-
point for our experiment.
BEiT-3. BEiT-3 [60] is a typical VLM for the second fu-
sion paradigm. It employs a unified multi-modal encoder
leveraging shared self-attention layers for cross-modal fu-
sion. It uses masked image modeling (MIM) as its core
training objects instead of ITM, thus unable to be di-
rectly utilized for GradCAM. We uses two public available
checkpoints, BEiT3-large-patch16-224 and BEiT3-large-
patch16-480-vqa for the vanilla BEiT-3 and BEiT-3-vqa, re-
spectively.

10.3. Large Language Models
For all LLMs, we set their temperatures for generation to
0.2 to balance generation diversity and stability, with other
settings identical to their default configuration.
Qwen-plus. Qwen-plus [4] is a commercial LLM for
general-purpose conversations. We obtain the generated
programs via API calls *.
GPT-4o-mini. GPT-4o-mini [24] is a lightweight variant of
GPT-4, designed for faster general-purpose dialogue. We

*https://help.aliyun.com/zh/model-studio/developer-reference/use-
qwen-by-calling-api

also obtain the generated programs via API calls †.
Qwen2.5-Coder. Qwen2.5-Coder [23] is a code-
specialized model. It demonstrates an excellent program-
ming capability, supporting code completion for many pro-
gramming languages (e.g., Python, Java). We use the pub-
lic available version of two sizes, Qwen2.5-Coder-14B-
Instruct and Qwen2.5-Coder-32B-Instruct for our experi-
ments.

11. Complete Programs of Visualizations
In this section we demonstrate the complete generated pro-
grams whose core code snippets shown in Fig. 5. Please
note that the input proposals are first transformed into the
format of (xc, yc, wp, hp), which are the horizontal and ver-
tical coordinates of the center of the proposal, and the width
and height of the proposal, respectively.
• “green van 7 o clock” (Fig. 5 (a)): Listing 1
• “a vase that is shorter and rounder” (Fig. 5 (b)): List-

ing 3
• “no hat guy” (Fig. 5 (c)): Listing 4
• “a flower vase that is round at the bottom and a narrow

cylinder at the top” (Fig. 5 (d)): Listing 2

12. Full Prompt for Generating Programs
We demonstrate the complete prompt including the general
formulation and examples in Sec. 12

†https://openai.com/blog/openai-api



1 import numpy as np
2 def reason(Subject, Objects):
3 # Reasoning step by step
4 # 1. The query can be decomposed into 2 sub-queries: "green van", "van 7 o clock".
5 van_lst = Subject
6

7 # 2. "green van": "green" is an incalculable attribute, so we just skip this sub-query.
8

9 # 3-1. "van 7 o clock" means we can reason and calculate depending on the position of each van
relative to the 7 o’clock direction.

10 # 3-2. Calculate the angle of each van relative to the center of the image.
11 center_x, center_y = 320, 240
12 van_angle_lst = []
13 for van in van_lst:
14 dx, dy = van[0] - center_x, van[1] - center_y
15 angle = np.arctan2(dy, dx) * 180 / np.pi
16 if angle < 0:
17 angle += 360
18 van_angle_lst.append(angle)
19

20 # 3-3. Normalize all the angles to make them comparable.
21 van_angle_lst = [x/max(van_angle_lst) for x in van_angle_lst]
22

23 # 3-4. "7 o clock" corresponds to an angle around 210 degrees (considering 0 degree at 3 o’
clock and increasing counter-clockwise).

24 target_angle = 210
25 van_angle_diff_lst = [np.abs(angle - target_angle) for angle in van_angle_lst]
26 van_angle_diff_lst = [x/max(van_angle_diff_lst) for x in van_angle_diff_lst]
27

28 # 3-5. "AT 7 o clock" means the score should be negatively correlated with the angle
difference.

29 for van in van_lst:
30 van[-1] -= van_angle_diff_lst[van_lst.index(van)]
31

32 # 4. Return the final Subject info list.
33 return van_lst

Listing 1. Full Program for Fig. 5 (a).

1 import numpy as np
2 def reason(Subject, Objects):
3 # Reasoning step by step.
4 # 1. The query can be decomposed into 2 sub-queries: "vase round at the bottom", "vase narrow

cylinder at the top".
5 vase_lst = Subject
6 # 2-1. "vase round at the bottom" is not a calculable attribute, skip it.
7 # 2-2. "vase narrow cylinder at the top" is also not a calculable attribute, skip it.
8 # Since both sub-queries describe attributes that are not calculable based on the provided

information, no changes to scores.
9 # 3. Return the final Subject list.

10 return vase_lst

Listing 2. Full Program for Fig. 5 (d).



1 import numpy as np
2 def reason(Subject, Objects):
3 # Reasoning step by step.
4 # 1. The query can be decomposed into 2 sub-queries: "vase that is shorter", "vase that is

rounder".
5 vase_lst = Subject
6 # 2-1. "vase that is shorter" means we reason and calculate depending on the height of each

vase.
7 vase_h_lst = [vase[3] for vase in vase_lst]
8 if max(vase_h_lst) != min(vase_h_lst): # avoid division by zero
9 vase_h_lst = [(max(vase_h_lst) - h) / (max(vase_h_lst) - min(vase_h_lst)) for h in

vase_h_lst]
10 else:
11 vase_h_lst = [1.0] * len(vase_h_lst)
12 # 2-2. Noting we want the vase to be SHORTER, so the score should be positively correlated

with the inverse of height.
13 for vase in vase_lst:
14 vase[-1] += vase_h_lst[vase_lst.index(vase)]
15 # 3-1. "vase that is rounder" means we reason and calculate depending on the width-to-height/

height-to-width ratio of each vase.
16 vase_ratio_lst = [min(vase[2], vase[3]) / max(vase[2], vase[3]) for vase in vase_lst]
17 if max(vase_ratio_lst) != min(vase_ratio_lst): # avoid division by zero
18 vase_ratio_lst = [(ratio - min(vase_ratio_lst)) / (max(vase_ratio_lst) - min(

vase_ratio_lst)) for ratio in vase_ratio_lst]
19 else:
20 vase_ratio_lst = [1.0] * len(vase_ratio_lst)
21 # 3-2. Noting we want the vase to be ROUNDER, which means a ratio close to 1, so the score

should be positively correlated with the ratio.
22 for vase in vase_lst:
23 vase[-1] += vase_ratio_lst[vase_lst.index(vase)]
24 # 4. Return the final Subject list.
25 return vase_lst

Listing 3. Full Program for Fig. 5 (b).

1 import numpy as np
2 def reason(Subject, Objects):
3 # Reasoning step by step.
4 # 1. The query can be decomposed into 1 sub-query: "no hat guy".
5 person_lst = Subject
6 # 2. "no hat guy" means we reason and calculate depending on the distance between each person

and any hat.
7 hat_lst = Objects["hat"]
8 if len(hat_lst) == 0: # if no "hat", all persons are considered to have no hat.
9 for person in person_lst:

10 person[-1] += 1
11 else:
12 # 3. Calculate the distance of each person and its nearest hat, then normalize.
13 person_hat_dis_lst = []
14 for person in person_lst:
15 person_hat_dis = min([np.sqrt((person[0]-hat[0])**2+(person[1]-hat[1])**2) for hat in

hat_lst])
16 person_hat_dis_lst.append(person_hat_dis)
17 person_hat_dis_lst = [x/max(person_hat_dis_lst) for x in person_hat_dis_lst]
18 # 4. Noting we want the person WITHOUT hat, the score should be positively correlated with

the distance.
19 for person in person_lst:
20 person[-1] += person_hat_dis_lst[person_lst.index(person)]
21 # 5. Return the final Subject list.
22 return person_lst

Listing 4. Full Program for Fig. 5 (c).



1 Your task is to generate an executable Python program based on the following input.
2 "Query": A sentence or phrase referring to a unique "Subject" instance.
3 "Subject_name": The name of the unique referent "Subject" in the "Query".
4 "Object_names": A list of names access to argument "Objects".
5 The program should perform the following steps: 1)Decompose the query into several independent sub

-queries focusing on "Subject" if it contains multiple relationships or attributes. 2)For each
sub-query that contains calculable relationships or attributes, convert its spatial or
logical relationships and attributes into computational code based on coordinates. Then
normalize and transform the computation results to obtain scores representing the degree of
match between the "Subject" and the sub-query. 3)Add the scores of all sub-queries to the
original score of each "Subject" instance.

6 The program should return the list of "Subject" instances.
7

8 The programs you generate will take the following two kwargs as input:
9 Subject: [[x1,y1,w1,h1,s1],..., [xn,yn,wn,hn,sn]] # [x,y,w,h,s] represent the horizontal

coordinate and vertical coordinate of the center, the width, the height, and the matching
score of each instance(initialize as 0), respectively.

10 Objects: {{
11 "name of the first object": [[x1,y1,w1,h1,s1],...,[xm,ym,wm,hm,sm]],
12 ...
13 }}
14

15 Here are some examples of input information and output programs:
16 [1]
17 "Query": "right sofa behind, farthest away from a dog"
18 "Subject_name": "sofa"
19 "Object_names": ["dog"]
20 ‘‘‘python
21 import numpy as np
22 def reason(Subject, Objects): # the names of the function and the arguments should be fixed.
23 # Reasoning step by step
24 # 1. This query can be decomposed into 3 sub-queries: "right sofa", "sofa behind", "sofa

farthest away from a dog".
25 sofa_lst = Subject
26 # 2-1. "right sofa" means we reason and calculate depending on each sofa’s normalized x-value.
27 sofa_x_lst = [sofa[0] for sofa in sofa_lst]
28 sofa_x_lst = [x/max(sofa_x_lst) for x in sofa_x_lst]
29 # 2-2. Noting the x-value goes larger as it goes nearer to the right and we want to be near

the right, the score should be positively correlated with x-value.
30 for sofa in sofa_lst:
31 sofa[-1] += sofa_x_lst[sofa_lst.index(sofa)]
32 # 3. "sofa behind" means we want the sofa in the back of the scene, however, we can’t reason

on this sub-query because the depth information is not provided.
33 # 4-1. "sofa farthest away from a dog" means we reason and calculate depending on the distance

between each sofa and dog.
34 # Word for word, use "dog" in "Object_names": ["dog"] above to access argument Objects.
35 dog_lst = Objects["dog"]
36 if len(dog_lst) == 0: # if no "dog", skip.
37 pass
38 else:
39 # 4-2. Calculate the distance of each sofa and its nearest dog, then normalize.
40 sofa_dog_dis_lst = []
41 for sofa in sofa_lst:
42 sofa_dog_dis = min([np.sqrt((sofa[0]-dog[0])**2+(sofa[1]-dog[1])**2) for dog in

dog_lst])
43 sofa_dog_dis_lst.append(sofa_dog_dis)
44 sofa_dog_dis_lst = [x/max(sofa_dog_dis_lst) for x in sofa_dog_dis_lst]
45 # 4-3. "FARTHEST" means largest distance, so the score should be positively correlated

with the distance.
46 for sofa in sofa_lst:
47 sofa[-1] += sofa_dog_dis_lst[sofa_lst.index(sofa)]
48 # 5. Return the final Subject list.
49 return sofa_lst
50 ‘‘‘



51 [2]
52 "Query": "drawing second from bottom"
53 "Subject_name": "drawing"
54 "Object_names": []
55 ‘‘‘python
56 import numpy as np
57 def reason(Subject, Objects):
58 # Reasoning step by step
59 # 1. The query can’t be decomposed into multiple sub-queries, so we reason directly.
60 drawing_lst = Subject
61 # 2. "FROM BOTTOM" means y axis from largest to smallest, so we can sort the instances by y

axis in descending order.
62 drawing_lst = sorted(drawing_lst, key=lambda x: x[1], reverse=True) # sort the instances by y

axis in descending order.
63 # 3. The target instance is the second one in the sorted list, whose index is 1, so we can

assign a higher score to it.
64 for i in range(len(drawing_lst)):
65 drawing_lst[i][-1] += 1.0/(np.abs(i-1)+1)
66 # 4. Return the final Subject list.
67 return drawing_lst
68 ‘‘‘
69

70 [3]
71 "Query": "bear in the corner with gray shirt, looks dirty"
72 "Subject_name": "bear"
73 "Object_names": ["gray shirt"]
74 ‘‘‘python
75 import numpy as np
76 def reason(Subject, Objects):
77 # Reasoning step by step.
78 # 1. The query can be decomposed into 3 sub-queries: "bear in the corner", "bear with gray

shirt", "bear looks dirty".
79 bear_lst = Subject
80 # 2-1. "bear in the corner" means we reason and calculate by the distance of each bear and its

nearest corner.
81 corners = [
82 (0, 0), # top left
83 (640, 0), # top right
84 (0, 480), # bottom left
85 (640, 480) # bottom right
86 ] # Noting the y-value goes larger as y goes down!
87 # 2-2. Calculate the distance of each bear and the its nearest corner, then normalize.
88 bear_cor_dis_lst = []
89 for bear in bear_lst:
90 bear_cor_dis = min([np.sqrt((x-bear[0])**2+(y-bear[1])**2) for x,y in corners])
91 bear_cor_dis_lst.append(bear_cor_dis)
92 bear_cor_dis_lst = [x/max(bear_cor_dis_lst) for x in bear_cor_dis_lst]
93 # 2-3. Noting we want the bear IN the corner, so the score should be negatively correlated

with the distance.
94 for bear in bear_lst:
95 bear[-1] -= bear_cor_dis_lst[bear_lst.index(bear)]
96 # 3-1. "bear with gray shirt" means we reason and calculate depending on the "bear" and "gray

shirt" instances.
97 # Word for word, use "gray shirt" in "Object_names": ["gray shirt"] above to access argument

Objects.
98 gray_shirt_lst = Objects["gray shirt"]
99 if len(gray_shirt_lst) == 0: # if no "gray shirt", skip.

100 pass



101 else:
102 # 3-2. Calculate the distance of each bear and its nearest shirt, then normalize.
103 bear_shirt_dis_lst = []
104 for bear in bear_lst:
105 bear_shirt_dis = min([np.sqrt((bear[0]-shirt[0])**2+(bear[1]-shirt[1])**2) for shirt

in gray_shirt_lst])
106 bear_shirt_dis_lst.append(bear_shirt_dis)
107 bear_shirt_dis_lst = [x/max(bear_shirt_dis_lst) for x in bear_shirt_dis_lst]
108 # 3-3. Noting we want the bear WITH shirt, the score should be negatively correlated with

the distance.
109 for bear in bear_lst:
110 bear[-1] -= bear_shirt_dis_lst[bear_lst.index(bear)]
111 # 4. "bear looks dirty": "dirty" is not a calculable attribute, skip it.
112 # 5. Return the final Subject list.
113 return bear_lst
114 ‘‘‘
115

116 Here are some tips:
117 # Remember the program’s input args have a fixed format and content. NEVER assume any infomation

not being provided!!!
118 # You should skip all incalculable sub-queries ONLY describing attributes like color, material,

behavior and pattern.
119 # You should try to convert calculable attributes, such as relative relationships, orientation,

size, distance, etc., into soft score.
120 # The top/up left, top/up right, bottom/down left, bottom/down right corner of the image is always

(0,0), (640,0), (0,480), (640,480).
121 # DO NOT include unnecessary information such as type annotations in the program.
122 # Your answer should ONLY contain a valid Python program of fixed function name and arguments.
123

124 "Query": {Query}
125 "Subject_name": {Subject}
126 "Object_names": [{Objects}]
127 Please think step by step and return a python program without any additional information.

Listing 5. Full prompt of the general formulation and examples across all datasets.


	Introduction
	Related Work
	Referring Expression Comprehension
	VLMs for REC
	LLMs for Visual Reasoning and Programming

	Method
	Extracting Referring Subject and Objects
	Debiasing Attention Map for Localization
	Code-based Relation Reasoning

	Experiments
	Datasets and Evaluation Metrics
	Implementation Details
	Comparison with State-of-the-Art Methods
	Ablation Studies
	Qualitative Results

	Conclusion
	Acknowledgments
	Details of Program Generation and Execution
	Additional Experiment Results
	Further Analysis of Generated Programs
	Descriptions of Utilized Models
	Open-Vocabulary Detectors
	Vision Language Models
	Large Language Models

	Complete Programs of Visualizations
	Full Prompt for Generating Programs

