
A. Additional Experiments
We provide additional quantitative experiments and detailed
discussion about Polygen [2] tokenization method here.

A.1. Experiments on Face Count Condition.
We tested the effectiveness of the face count condition by
scaling the ground truth face count value by a scalar. We used
the V2 model trained on the mesh dataset with fewer than
1600 faces as the test model and sampled 10K point clouds
for each mesh to calculate the metrics. During inference,
for each ground truth mesh, we input the scaled face count
and the paired point cloud into the model and measured the
effect on face count and mesh quality. As shown in Tab. 1,
at a scale ratio of 0.8, the model significantly reduced the
face count while maintaining mesh quality. However, at a
scale ratio of 0.6, the face count did not decrease further,
indicating that while the model has some ability to follow the
face condition, it prioritizes mesh quality when the condition
becomes difficult to meet. Similarly, when the scale ratio is
set to greater than 1, the model exhibits similar behavior.

A.2. User Study.
We conducted a user study on mesh generation quality to
compare MeshAnything [1] and our works. For a fair com-
parison, we randomly sampled 30 meshes with fewer than
800 faces from the evaluation dataset and input their paired
point clouds into each model. Users were asked to select
the result they preferred from the two options. We collected
responses from a total of 43 users, and the voting rates for [1]
and MeshAnything V2 were 32.2% and 67.8%, respectively.
This indicates that the results generated by V2 are more
aligned with human preference.

A.3. Discussion on PolyGen Tokenization Method.
Polygen[2] introduces a mesh tokenization approach that
differs from other existing methods [3] for mesh generation.
It first employs an autoregressive vertex model to generate
the 3D coordinates of the mesh’s vertices. These vertices
are then used as a prefix and fed into another autoregressive
face model, which connects these vertices into faces, thus
constructing the entire mesh. Since the 3D coordinates are al-
ready provided by the vertex model, the face model does not
need to estimate the 3D coordinates, but only specifies the
connections using vertex indices, significantly reducing the
sequence length. During the face generation, this tokeniza-
tion method can be combined with AMT further shorten the
token sequence length.

By using vertex indices to represent faces, PolyGen [2] to-
kenization consumes only one token to define a face, whereas
other methods require three tokens to represent a single ver-
tex. Assuming a vertex is referenced n times, PolyGen’s
tokenization requires 3 + n tokens, whereas other tokeniza-
tion methods would require 3×n tokens. Although PolyGen

Table 1. Experiments on Face Count Condition. We control the
face count condition using the scale ratio, where 1.0 indicates using
the ground truth face count as the condition. The experiments show
that our face count condition has the ability to control the number
of faces.

Scale Ratio CD↓ (×10−2) V Ratio F Ratio
1.0 1.768 1.127 1.097
0.8 1.734 0.928 0.912
0.6 1.822 0.902 0.882
1.2 1.814 1.282 1.248
1.4 1.920 1.271 1.252

spends one additional token when a vertex is referenced only
once, in most cases, each vertex is referenced multiple times,
allowing PolyGen’s approach to save sequence length.

Although PolyGen tokenization effectively reduces the
token sequence length, this generation method requires the
model to accurately predict vertex positions first, which may
not be ideal for an autoregressive model.

In the experiments section of our main paper, we compare
Polygen tokenization method with other methods. To make a
fair comparison, we merge the two stage generation process
of PolyGen [2] into a single model that first generates vertex
coordinates and then expresses the faces by generating vertex
indices. Besides, we combine PolyGen’s face generation
stage with AMT to further reduce the token sequence length.

B. Limitations.
Although there is a large improvement over V1, the accuracy
of MeshAnything V2 is still insufficient for industrial ap-
plications. More efforts are needed to improve the model’s
stability and accuracy.

References
[1] Yiwen Chen, Tong He, Di Huang, Weicai Ye, Sijin Chen,

Jiaxiang Tang, Xin Chen, Zhongang Cai, Lei Yang, Gang Yu,
Guosheng Lin, and Chi Zhang. Meshanything: Artist-created
mesh generation with autoregressive transformers, 2024. 1

[2] Charlie Nash, Yaroslav Ganin, SM Ali Eslami, and Peter
Battaglia. Polygen: An autoregressive generative model of
3d meshes. In International conference on machine learning,
pages 7220–7229. PMLR, 2020. 1

[3] Yawar Siddiqui, Antonio Alliegro, Alexey Artemov, Tatiana
Tommasi, Daniele Sirigatti, Vladislav Rosov, Angela Dai, and
Matthias Nießner. Meshgpt: Generating triangle meshes with
decoder-only transformers. arXiv preprint arXiv:2311.15475,
2023. 1


	Additional Experiments
	Experiments on Face Count Condition.
	User Study.
	Discussion on PolyGen Tokenization Method.

	Limitations.

