Moto: Latent Motion Token as the Bridging Language for
Learning Robot Manipulation from Videos

Supplementary Material

7. Details on Experiment Setup

7.1. Benchmarks

SIMPLER. On the SIMPLER benchmark, we focus
on three tasks concerning the Google Everyday Robot
embodiment: Pick Coke Can, Move Near, and
Open/Close Drawer, as illustrated in Fig. 13. The
“Pick Coke Can” task involves grasping and lifting the
empty coke can in three different orientations: horizontal
laying, vertical laying, and standing. The ‘“Move Near”
task places 3 (out of 8) objects in a triangle pattern on the
tabletop and instructs the robot to move a designated source
object near another object as the target. The “Open/Close
Drawer” task requires the robot to open or close a specific
drawer from the top, middle, or down position of a cabinet.

Pick Coke Can

Move Near Open / Close Drawer

c
move blue plastic bottle neat ponge

Figure 13. Illustration of the evaluation tasks in SIMPLER [31].

CALVIN (ABC—D). The CALVIN benchmark uses a
Franka Emika Panda robot embodiment. It evaluates long-
horizon task completion with unconstrained language in-
structions. In each trial, the robot should accomplish 5 (out
of 34) tasks in a row. There are four different environments
(A, B, C, D), each containing a desk with a sliding door,
a drawer, differently colored blocks, a button that toggles
an LED, and a switch controlling a lightbulb. As shown
in Fig. 14, the environments differ in the textures of the
desk, and the positions of all static elements including the
sliding door, the drawer, the LED button, and the lightbulb
switch. We conduct experiments under the most challeng-
ing ABC—D setting, i.e., training on data from environ-
ments A, B, and C while testing in D.

Real-world Robot Experiments. We design three tasks
for real-world evaluation: Pick-Place Banana (pick-
ing up a banana from the tabletop and placing it in a pan),
Close Laptop (pushing the laptop’s lid until it is com-
pletely closed), and Disassembly (removing the stick

Training

Env A Env B

Env C

Figure 14. Illustration of the four different environments in
CALVIN, adapted from the original figure in Mees et al. [39].

that is assembled in the slot). All tasks are executed with
a FANUC LR Mate 200iD robot arm, as shown in Fig. 3.
Each task is tested for 10 times, with the initial positions
of objects randomized. For generalization evaluation, we
consider two scenarios: (i) Novel Object: we change the
color, texture, and shape of the manipulated object; (ii) Vi-
sual Distractor: we add irrelevant objects as distractors.

7.2. Datasets

Training Latent Motion Tokenizer & Pre-training
Moto-GPT. On the SIMPLER benchmark, we use a sub-
set of Open-X-Embodiment (OXE) [52] to train the La-
tent Motion Tokenizer and pre-train Moto-GPT, includ-
ing 109k real-world trajectory videos from RT-1 Robot
Action [4], Bridge [53], Task Agnostic Robot Play [40,
48], Jaco Play [13], Cable Routing [36], RoboTurk [38],
NYU VINN [44], Austin VIOLA [61], Berkeley Autolab
URS [9], and TOTO [60] datasets across various embodi-
ments. On CALVIN, we use all the play videos from envi-
ronments A, B, and C to train the Latent Motion Tokenizer.
35% data (including 18k trajectory videos) with language
annotations is used for autoregressive pre-training. The
real-world experiments also use OXE data for pre-training.

Fine-tuning Moto-GPT. On the SIMPLER benchmark,
we use the 73k action-labeled real-world expert trajectories
from RT-1 Robot Action [4] to fine-tune the policy model.
On the CALVIN benchmark, we use the 18k demonstration
trajectories with language annotations and action labels
from environments A, B, and C for fine-tuning. For real-
world experiments, we collect 90 demonstration trajectories
(30 for each task) with teleoperation for fine-tuning.

Note that all the pre-training and fine-tuning data for SIM-
PLER come from the real world instead of simulation en-
vironments. This setting aims to study the model’s transfer
ability between real and simulation scenarios. On the other
hand, the ABC-only setting for CALVIN training data aims
to evaluate the model’s zero-shot generalization capability
to the unseen environment D.

7.3. Compared Models

SIMPLER. On the SIMPLER benchmark, we mainly
compare Moto-GPT with five representative models pre-
trained with Open-X-Embodiment datasets:

e RT-1-X [4] uses a transformer backbone to output tok-
enized actions with a FILM EfficientNet to fuse language
and 6 history images into token inputs.

e RT-2-X [62] adapts the pre-trained large vision-language
model (VLM), PaLI-X (55B), into a robot policy by cast-
ing tokenized actions into text tokens.

* Octo-Base [41] employ a transformer architecture to pro-
cess language and image tokens, with a diffusion-based
action head to produce actions.

¢ OpenVLA [27] builds on a pre-trained Prismatic-7B
VLM backbone for robot action prediction.

* OpenVLA (fine-tuned) further fine-tunes OpenVLA on
the RT-1 Robot Action dataset [4], despite its action-
labeled pre-training data already contains this dataset.

CALVIN. On the CALVIN benchmark, we select the fol-
lowing baseline models that leverage pre-training strategies
to improve robot manipulation performance:

* SuSIE [3] pre-trains an image editing model to generate
the goal image, which is fed into a low-level policy for
action prediction.

* RoboFlamingo [32] is a robot policy model adapted from
OpenFlamingo, a large VLM pre-trained on extensive
vision-language corpus.

* GR-1 [54] pre-trains a GPT-style transformer to directly
predict the pixel values of a single-step future observation
for each input observation.

e MT-R3M [54] is a variation of GR-1, which leverages
the pre-trained robot visual encoder R3M [42] to encode
observation images.

Table 4. Implementation details of the Latent Motion Tokenizer.

Component Parameter Value
num-queries 8
num_layers 4
M-Former hidden_size 768
num_heads 12
patch_size 16
. num_layers 12
ViTDecoder piijen size 768
num_heads 12
num_codes 128
VQ Codebook latent_dim 32

Ablations of Moto-GPT. We study the following varia-
tions of Moto-GPT as optional baselines:

* Moto w/o Motion Token shares the same backbone with
Moto-GPT but is trained from scratch on action-labeled
robot data without latent motion tokens.

* Moto-IML undergoes the same pre-training stage as
Moto-GPT. It keeps latent motion tokens in the input se-
quence but ignores the next-motion-token-prediction loss
during the fine-tuning stage.

* Moto-DM is pre-trained in the same way as Moto-GPT
but completely discards latent motion tokens in the input
sequence during fine-tuning.

8. Training Details

8.1. Latent Motion Tokenizer

The implementation details for the trainable modules of the
Latent Motion Tokenizer are summarized in Table 4. We
use the hyperparameters listed in Table 5 to train this model
on four 40G GPUs. To facilitate the learning of latent mo-
tion tokens, we downsample the original videos in the train-
ing dataset, ensuring that the visual motion between frames
is sufficiently distinct. Specifically, for videos from the
OXE data, we sample one frame every three frames (i.e.,
At = 3) for videos from the RT-1 Robot-Action subset.
The sampling rates for videos from other OXE subsets are
adjusted based on the ratio of their fps to that of RT-1 Robot-
Action videos. For human videos, At is empirically set to
6. We train the Latent Motion Tokenizer for 350k steps.
For videos from the CALVIN dataset, we adopt a sampling
rate of one frame every five frames (At = 5) and train the
model for 150k steps. For real-world robot experiments, we
fine-tune the Latent Motion Tokenizer pre-trained on OXE
videos for another 500 steps on the newly collected real-
world trajectory videos.

Table 5. Training hyperparameters for Latent Motion Tokenizer.

Parameter Value
batch_size 256
optimizer AdamW
Ir_max le-4
Ir_schedule cosine decay
weight_decay le-4
warmup_steps 1000

Table 6. Implementation details of Moto-GPT.

Component Parameter ~ Value
num_layers 12

GPT backbone hidden_size 768
num_heads 12

Action Head num_layers 2

hidden _size 384

Table 7. Training hyperparameters for Moto-GPT.

Parameter Value
batch_size 512
optimizer AdamW
Ir_max le-4
Ir_schedule cosine decay
weight_decay le-4
warmup_epochs 1

8.2. Moto-GPT

We present the implementation details of Moto-GPT in Ta-
ble 6, where the Action Head is included only during the
fine-tuning phase. Moto-GPT handles a maximum video
length of three frames, and the video downsampling rate
applied during both the pre-training and fine-tuning stages
is consistent with the rate used for training the Latent Mo-
tion Tokenizer. When fine-tuning Moto-GPT across dif-
ferent benchmarks, the number of action query tokens in-
serted after the latent motion tokens at each time step varies.
Specifically, for the SIMPLER benchmark, we insert three
action query tokens, whereas for the CALVIN benchmark,
we insert five. For pre-training, Moto-GPT is trained for
10 epochs using eight 40G GPUs, with the relevant hyper-
parameters outlined in Table 7. The hyperparameters for
fine-tuning remain consistent with those used during pre-
training, with the exception of the number of epochs. Dur-
ing fine-tuning, Moto-GPT is trained for three epochs on the
RT1-Robot-Action dataset and 18 epochs on the CALVIN
dataset, utilizing four 40G GPUs. For real-world exper-
iments, we start with the same pre-trained checkpoint of
Moto-GPT as adopted for the SIMPLER benchmark. We

further pre-train it with a combination of OXE videos and
the 90 newly collected trajectory videos for 5 epochs. Then
we fine-tune it with real robot action labels for 20 epochs.

9. Details of Experiments

Next Frame
(reconstructed)

Next Frame

Figure 15. Qualitative examples of reconstruction results, where
discrete motion tokens obtained from the Latent Motion Tokenizer
based on the initial and next frame, are fed into the decoder along
with the initial frame to reconstruct the target frame.

Table 8. Top-K motion token prediction accuracy of Moto-GPT
in predicting ground-truth latent motion tokens from a 128-size
codebook on the validation splits of the pre-training datasets.

Dataset Top-5 Top-10 Top-20

Oepn-X-Embodiment 0.521 0.698 0.853
Calvin (ABC—D) 0.298 0518 0.768

10. Limitations & Future Work

This paper introduces Moto, a novel method that uses latent
motion tokens as a “language” interface to bridge generative
pre-training on video data with precise robot control. Moto
opens several exciting avenues for future work.

Firstly, Moto demonstrates the feasibility of learning a
unified language to interpret diverse visual dynamics from
videos, eliminating the need for hardware-specific action la-
bels. The latent motion trajectories tokenized from videos
provide a rich resource for models to learn motion priors
closely related to low-level actions. While we currently
mainly use robot videos to train the Latent Motion Tok-
enizer, the learned latent motion tokens demonstrate the
potential to produce consistent visual motions across var-
ied contexts and embodiments. Notably, our preliminary

Initial Frame Rotate the pink block 90 degrees to the right

Figure 16. Predicted video trajectories by the pre-trained Moto-GPT for CALVIN tasks reflecting delicate robot actions.

experiments with SSV2 videos show promising results in
human-to-robot motion transfer via latent motion tokens.
We believe a similar approach could be applied to model
more complex human motions, enabling robots to learn a
wealth of world knowledge from Internet-scale videos.

Besides, the Moto-GPT pre-trained on videos tokenized
into latent motion token sequences and fine-tuned on
action-labeled trajectories, effectively transfers motion pri-
ors learned from (even human) videos to actual robot action
prediction. This is particularly beneficial in low-resource
scenarios. Future work could scale up pre-training video
data and optimize fine-tuning to improve model perfor-
mance on downstream robot tasks further.

Moreover, while Moto is primarily utilized to enhance
imitation learning for robot manipulation tasks, it shows po-
tential as a reward model for measuring trajectory rational-
ity and as a vivid environment simulator. Future research
could explore Moto’s use in improving the robustness of re-
inforcement learning agents and extending its application to
a wider range of robotic tasks, such as navigation and loco-
motion, to develop a more versatile robot action policy.

