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A. Training and Inference Cost
In this section, we compare the training and inference costs
of our proposed method in detail with our competitive peers.
The costs for the comparing mainly consist of 4 aspects:
(1) The computational resources consumed during training,
(2) The details of the data supporting the training, (3) The
number of trainable parameters of the model along with
the TFLOPS of one single forward process, and (4) The
inference speed. The methods we compare include: Face
vid2vid [8], AniPortrait [9], LivePortrait [3], X-Portrait [10]
and Real3dPortrait [13].
Computational Resources. In Tab. 1 we list the demanded
computational resources of all the tested methods on generat-
ing 512 px results. We use the officially reported information
and the implementations of the above methods for testing
if they are provided. We use “-” to mark the data that is
not reported. Without an available official implementation,
we test Face vid2vid using a popular unofficial project1 and
mark the related results with italic type. Considering that the
computing capabilities of different GPUs vary, we use tools
from [4] to measure the integrated computational resources
following the official release website2 of SD [7]. The quanti-
tative results show that our proposed method is competitive
in terms of training resource consumption, which indicates
the superiority and efficiency of the designed structure of the
model.

Methods GPU Days Carbon Emitted (kgCO2eq)
Face vid2vid 56 V100 174.18
AniPortrait 16 A100 66.36
LivePortrait 80 A100 331.78
X-Portrait - -

Real3dPortrait 59 A100 246.07
Ours (Skeleton Stage) 6 V100 18.68
Ours (Texture Stage) 32 A800 82.94

Table 1. The required training computational resources of the men-
tioned methods. Note that “-” means undisclosed data, and italic
type denotes that the value is estimated using the unofficial imple-
mentation.

Training data. In Tab. 2, we list the details of the training
datasets. Considering that the splitting strategy for video
clips adopted by different methods is different, we compare
the dataset sizes based on the approximate number of orig-
inal video clips directly. Public data refers to open-source
1https://github.com/zhanglonghao1992/One-Shot Free-
View Neural Talking Head Synthesis

2https://huggingface.co/CompVis/stable-diffusion-v1-1

datasets, while in-house data refers to the datasets that are
not released in public. “None” indicates that such type of
data is not involved, and “-” indicates that the related infor-
mation is not reported. Quantitatively, our method requires
relatively less data, proving that our method has superior
structural design and is easier to follow. As we claim in our
main article, by introducing the synthetic data, the required
real-world data of our method is only 10%-30% of that of
other methods. Note that for the LightStage dataset [11, 12]
used by LivePortrait [3] and the in-house dataset used by
X-Portrait [10], these datasets are collected in the real world.
Considering the devices and the conditions of the data collec-
tion as well as the portrait copyrights, they are inaccessible
datasets for external users. In contrast, our in-house dataset
is synthetic data generated by the rendering tools. The assets
are collected from the open-source domain and the rendering
software is also accessible.

Methods Public Data/K In-house Data/K
Face vid2vid 780 None
AniPortrait 50 None
LivePortrait 562 800
X-Portrait None -

Real3dPortrait 180 None
Ours 16 550

Table 2. The required training data of the mentioned methods. Note
that “-” means undisclosed data, and “None” means such type of
data is not involved.

Methods Trainable Parameters/B TFLOPS
Face vid2vid 0.11 1.20
AniPortrait 1.71 3.87
LivePortrait 0.13 1.26
X-Portrait 2.02 4.22

Real3dPortrait 0.15 1.39
Ours 1.23 2.07

Table 3. The trainable parameters and required TFLOPS for a single
512 px forward process. Note that italic type denotes that the value
is estimated using the unofficial implementation.

Trainable Parameters and TFLOPS. In Tab. 3, we list
the trainable parameters and the TFLOPS of all mentioned
frameworks required for one forward pass at 512px. We use 3

to calculate the TFLOPS. Similarly, the test of Face vid2vid
is done with the unofficial implementation. Clearly, models
3https://www.deepspeed.ai/tutorials/flops-profiler/#flops-measurement



based on non-diffusion frameworks including Face vid2vid,
LivePortrait and Real3dPortrait have smaller sizes and lower
TFLOPS for one forward pass. Compared to other diffusion
framework methods including AniPortrait and X-Portrait,
our method has advantages in terms of computational cost
and model size, aided by our lightweight Transformers-based
skeleton anchoring module and efficient DiT-based texture
rendering module.
Inference Speed. We test the inference speed of our method
and our competitive peers’ methods. The test is conducted
on a single Nvidia A800 GPU at 512px. For all the methods,
we use the officially reported hyper-parameters for inference.
The comparisons are listed in Tab. 4. A detailed discussion
is listed in the following section about our limitations.

Methods Face vid2vid AniPortrait LivePortrait X-Portrait Real3dPortrait Ours
Speed/fps 20.0 0.75 24.1 0.56 1.89 0.64

Table 4. The trainable parameters and required TFLOPS for a single
512 px forward process. Note that italic type denotes that the value
is estimated using the unofficial implementation.

B. More Results

In this section, we showcase more visualization results of
our model. Fig. 1 and Fig. 2 show more editing cases such
as positions, shapes, and Euler angles. Fig. 3 shows more
effects of the model in free-animating scenarios.

Fig. 1 shows the editing on the horizontal position, the
vertical position, the zoom, the facial shapes, and the expres-
sions of our model, which is marked as (a)-(e) in the figure
respectively. We use CelebA [5] dataset for these tests. Fig.
2 shows the editing on the Euler angles. The rotation of the
yaw, pitch, and roll is shown by (a)-(c) in the figure. We use
images from CelebA, the official test split of VFHQ, along
with a few in-the-wild portraits to complete these tests. Fig.
3 shows the animating cases of our model. (a) shows the
self-reenactment cases on the VFHQ testset, and (b) shows
the cross-reenactment cases for in-the-wild pictures.

In our framework, the skeleton anchoring part is responsi-
ble for learning accurate rigid and non-rigid transformations,
while the texture rendering part is responsible for accurately
rendering the given texture onto the corresponding skeleton.
Such design exposes the interactive parts to the users, mak-
ing it easier to customize their own effects. Benefiting from
this decoupled design of skeleton and texture, our frame-
work learns various mixed attributes better. In particular,
compared to other existing methods, the precise skeleton
structure serves as a kind of prior knowledge provided to
the texture rendering module, rather than the target to learn.
This ensures that the interpretability of the overall framework
stays at a quite high level, allowing modules to focus more
on learning the matching relationship between texture and

skeleton structure, thus avoiding overfitting caused by the
implicit modeling. For example, our model performs well on
the stylized cases, even though our model is trained without
any stylized images.

C. Limitations
Although our framework has made progress in design meth-
ods and generated qualities, there still remains room for
improvement in the temporal consistency and the computa-
tional cost. In terms of the temporal consistency, our pipeline
runs without any temporal-related modules. We generate our
dynamic results by directly combining all the static images,
and the temporal consistency is purely achieved by the basic
stability of our model. In most cases, as the skeleton infor-
mation has dense and intense spatial correlation with the
desired rendered result, the generated temporal consistency
is satisfying if adequate stable driving frames are provided.
However, when the movement of the character in the frame
becomes excessively large, the instability and abrupt changes
in facial structure and background within the dynamic re-
sults are further exacerbated. Adding the mostly proposed
temporal attention modules to the framework may ease such
problems. Our framework contains a diffusion module, thus
there is some gap in complexity compared to non-diffusion
frameworks. The diffusion model requires multiple sampling
steps to obtain the final result, while non-diffusion frame-
works like GANs only require a single inference; Moreover,
the diffusion model contains more computationally intensive
operators such as attention. For the former point, methods
like LCM [6] can be combined to shorten the model’s infer-
ence time by reducing the number of sampling steps. For
the latter point, more efficient operators with better prin-
ciples like Mamba [1, 2] may greatly improve the overall
performance of the model.

D. Further Discussion: the Adaptive Strategy
In this section, we delve a little deeper into the discussion
of our proposed adaptive strategy ablation mentioned in
the article. The results have shown that our proposed adap-
tive strategy effectively reduces the training difficulty of the
model. In fact, in our framework, after converting a total of
1,107 keypoints into Gaussian distribution features, the over-
all features obtained own a very high complexity, which is
reflected in the number of channels and spatial scales of the
feature map. If all these abundant features are treated equally,
the model will struggle to forcibly map each of them to mul-
tiple complex contents in the image, proven by the generated
artifacts in the unexpected areas. Our adaptive strategy gives
the model more flexibility, allowing the model to allocate a
looser floating range for the skeletal points which are more
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Figure 1. More qualitative editing results of our methods. (a)-(e) denotes editing on the horizontal position, the vertical position, the zoom,
the facial shapes, and the expressions respectively.

difficult to learn, so that the actual responsible areas for each
point can dynamically adjust, reducing the training difficulty
of the model.

E. User Study

We conduct a user study for the animating results, including
the self-reenactment cases and the cross-reenactment cases.
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Figure 2. More qualitative results of editing the Euler angles. (a)-(c) represent editing the yaw, pitch, and roll respectively.
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Figure 3. More qualitative results of free animating. (a) represents the self-reenactment case, and (b) represents the cross-reenactment case.

The evaluation metrics include the quality of the generated
images, the fidelity in terms of poses and expressions to the
target image, and the retention of the identity information of
the source image in the generated results, which are abbre-
viated to “Quality”, “Fidelity” and “Retention” respectively.
The comparisons are conducted over Face vid2vid, AniPor-
trait, LivePortrait, X-Portrait, Real3dPortrait and ours. We
prepare 25 pairs of source-target images for self-reenactment

and cross-reenactment scenarios respectively, and we dis-
tribute the tests to 150 users. For each pair of test samples,
users are asked to rank the results generated by the 5 meth-
ods according to all the evaluation metrics, thus we obtain
7,500 choices for each metric. We calculate the proportion
of each framework that receives the best evaluation, and
such quantitative results of the self-reenactment case and
the cross-reenactment case are shown in Tab. 5 and Tab. 6



respectively. From a quantitative perspective, our method
outperforms its competitive peers.

Methods Quality Fidelity Retention
Face vid2vid 0.1200% 2.5333% 0.0533%
AniPortrait 14.6667% 6.0267% 1.5733%
LivePortrait 14.9867% 12.0800% 16.4267%
X-Portrait 13.3867% 9.4933% 9.6267%

Real3dPortrait 0.1333% 2.0267% 6.0800%
Ours 71.2267% 67.8400% 66.2400%

Table 5. The quantitative results of the user study for self-
reenactment cases.

Methods Quality Fidelity Retention
Face vid2vid 0.9333% 0.4267% 5.8400%
AniPortrait 6.8267% 6.7200% 3.9333%
LivePortrait 11.2533% 10.5600% 7.9733%
X-Portrait 7.7867% 7.2267% 8.1333%

Real3dPortrait 1.7067% 6.0800% 2.0667%
Ours 71.4933% 68.9867% 72.0533%

Table 6. The quantitative results of the user study for cross-
reenactment cases.

F. Bias of the Synthetic Data

As mentioned in the article, the synthetic data plays an im-
portant role in our designed pipeline, which supports the
whole training data of the skeleton stage and a large part
of the rendering stage. However, as discussed before, the
synthetic data is born with a kind of bias: it lacks realism
in terms of the texture compared with the real-world data,
and there is subtle difference between the rendered geometry
structures and the real ones. In our work, we have incorpo-
rated a few designs to mitigate such bias: (1) Our designed
skeleton anchoring stage outputs pure keypoints, preventing
the leakage of the synthetic texture into the posterior stage;
(2) The Gaussian-like representation described in our article
converts strict keypoint locations to potential position ranges,
which brings in more flexibility and reduces the bias of syn-
thetic geometry structures; (3) The rendering stage runs in
the latent space of the VAE, which rarely has high frequency
information and limits the harm from the synthetic texture.
Thus we handle real-world and synthetic data through a uni-
fied framework without explicit domain adaptation. Besides,
we manually add a little synthetic data to the training of the
texture-rendering stage, making the model more adaptable
to the skeleton stage trained on the synthetic data. The actual
ratio of the synthetic data to the real-world one is 1:9.
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