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In this supplementary material, we provide,

1. Theoretical support for using fused information in Sec. 1.
2. Visualizations for RAda in Sec. 2.
3. Detailed settings of RAda in the FFT setting in Sec. 3.
4. Extending other fine-tuning ideas in FFT in Sec. 4.
5. Ablation studies on Lreg in Sec. 5.
6. Experiments with different backbones in Sec. 6.
7. Experiments with different VLMs in Sec. 7.
8. Experiments for using more attention layers in Sec. 8.

1. Theoretical Support for Utilizing Fused In-
formation Over Isolated Representation

Our empirical observations indicate that adapting the ratio-
nal matrix yields better performance than adapting the dif-
ferent modalities in isolation. In this section, we provide
theoretical explanations for justification the selection of uti-
lizing the final fused information rather than the isolated
representations in fine-tuning. In particular, we demonstrate
the advantage of RAda against three fine-tuning ideas (i.e.
separately adapt the image features or text features in isola-
tion or jointly adapt both features). The explanation frame-
work is grounded in information theory and statistical suffi-
ciency. Below is a step-by-step proofs.

Given the random sampled class label Y, image embed-
ding f ∈ RD, text embedding h ∈ RK×D, rational matrix
R ∈ RK×D (each element defined as Ri,j = fj ·hi,j

1), we
present the adaptation of image or text embedding as learn-
ing task-specific transformations: f 7→ f◦Mf , h 7→ h◦Mh,
and similar for the rational matrix: R 7→ R ◦ M, with ◦
element-wise product and Mf ∈ RD,Mh ∈ RK×D, and
M ∈ RK×D being learnable parameters. We first have,
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1The two embeddings are both normalized in this section.

Lemma 1.1. The rational matrix R is a sufficient statistic
of Y. Formally, by the definition,

p(Y|f ,h) = p(Y|R), (1)

where p(Y|f ,h) denotes that the prediction in CLIP re-
lies on both the image and the text embeddings.

Proof. In the CLIP model, the prediction rule depends only
on the inner products

∑
j Ri,j , which are functions of R.

Thus, the likelihood p(Y|f ,h) depends on f and h only
through R. Therefore, R is a sufficient statistic for Y.

Given R is sufficient for Y, we thus have equality be-
tween mutual informations: I(Y;R) = I(Y; f ,h).

Lemma 1.2. Adapting R achieves mutual information with
Y no less than adapting f or h. In particular,

I(Y;R ◦M) ≥ max{I(Y; f ◦Mf ,h), I(Y;h ◦Mh, f)}.
(2)

Proof. Revisiting the first term in RHS of Eq. (2), we can
represent it as: I(Y; f ◦Mf ,h) = I(Y;R ◦ (Mf ⊗ 1⊺

K)),
with ⊗ denotes the Kronecker product, and Mf ⊗1⊺

K refers
replicate Mf across rows. By the data processing inequality
(DPI) [2], we have,

I(Y;R ◦M) ≥ I (Y;R ◦ (Mf ⊗ 1⊺
K)) , (3)

since R ◦ (Mf ⊗ 1⊺
K) can be regarded as a determinis-

tic function of R ◦ M (by constraining M to be column-
wise). If we constrain M = Mf ⊗ 1⊺

K , where the
task-relevant information in R is uniformly distributed
across rows within each column, then: I(Y;R ◦ M) =
I (Y;R ◦ (Mf ⊗ 1⊺

K)) .
The same goes for adapting h with Mh, with I(Y;h ◦

Mh, f) = I(Y;R◦Mh), due to the uniform natural of text
embeddings across all samples, R ◦Mh can be regarded as
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a deterministic function of R◦M (by constraining M to be
sample-wise). We thus have,

I(Y;R ◦M) ≥ I(Y;h ◦Mh, f). (4)

In all, equality in Eq. (2) holds for these constrained
cases. Otherwise, we will have LHS larger than RHS in
Eq. (2).

Lemma 1.3. Adapting R achieves higher mutual informa-
tion with Y than adapting h and f jointly. In particular,

I(Y;R ◦M) ≥ I(Y;h ◦Mh, f ◦Mf ). (5)

Proof. By the DPI, we have,

I(Y;h, f ◦Mf ) ≥ I(Y;h ◦Mh, f ◦Mf ), (6)

where the equality holds when Mh is invertible. Combining
with Lemma 1.2, we thus can complete the proof.

Lemma 1.2 and 1.3 demonstrate that adapting the ratio-
nal matrix results in mutual information no less than adapt-
ing f , h, or both f and h. According to the information
bottleneck principle [12], a higher mutual information be-
tween the label and an intermediate representation gener-
ally correlates with better predictive performance. Given
the compression performance (i.e. generalizibility) of the
model can be largely preserved via an all-one regularization
for M in our implementation, it is not surprise that lever-
aging the fused representation can be more beneficial than
utilizing the individual modalities in isolation. These obser-
vations align with our empirical observations in the ablation
studies, and they further justify our motivation for adapting
the rational matrix to achieve effective fine-tuning.

2. Visualization
We present 2D t-SNE plots [13] of M ◦ R (corresponding
to RAda) and R (representing the original CLIP) to illus-
trate the behavior of the learned mask M. As shown in
Figure 1, the adapted R in the EuroSAT dataset exhibits en-
hanced differentiability, with tighter clusters indicating im-
proved class separability compared to that of CLIP. Addi-
tionally, the plot of M ◦R for OxfordPets reveals 19 clus-
ters, matching the total class count in the dataset, while the
original R from CLIP shows only 18 classes. This dis-
tinction aligns with the enhanced classification performance
achieved through M. These findings validate the effective-
ness of adapting the decision-making process in achieving
improved predictions within a VLM.

We also present the distribution of the values in the mask
M for the two datasets. The plots in Figure 2 show that, for
both datasets, the mask values exhibit a mean value of ap-
proximately 1.0, with the majority of the weights centered
around 1 to form a normal distribution, and the mask value
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Figure 1. T-SNE [13] plots of the Rational Matrix from CLIP
and RAda in the EuroSat (5 classes) and OXfordPets (19 classes)
datasets. The adapted rational matrix in RAda shows clearer and
more precise separation than that in the original CLIP.

Figure 2. Distributions of values in the learned mask M for Eu-
roSAT (i.e. left figure) and Oxford Pets (i.e. right figure) datasets.

(a) M (b) R (c) M ◦ R
Figure 3. Heatmaps of the rational adaptation process.

can reach as high as 3, indicating the varying contributions
of different rational elements after adaptation. We hope this
finding can inspire future research to develop more effec-
tive learning objective for adapting the rational matrix. We
present an example of the adaptation process to better il-
lustrate how the original decision matrix got shifted by the
process. We show heatmaps of the mask M, the rational ma-
tries R, and M ◦ R in Figure 3 (left to right), where M ◦ R
shows more evident classification clue than R with larger
values in the 2nd last column, suggesting the rational adap-
tation process helps the model to capture more confident
outputs.

3. Detailed Settings in FFT
Our implementation in the FFT setting consists of two con-
secutive parts, first updating the rational adapter (i.e. RAda)
and then updating all learnable parameters (i.e. RAda-FT).



Table 1. Extending CLIP-Adapter [4] in the FFT setting. Results
with † are reevaluated in our device, others are from FLYP [5].

Training in Imagenet
Methods ID Im-V2 Im-R Im-A Im-S Object OOD Avg.

LP 79.9 69.8 70.8 46.4 46.9 52.1 57.2
FT 81.3 70.9 65.6 36.7 46.3 49.6 53.8

L2-SP 81.7 71.8 70.0 42.5 48.5 56.2 57.8
LP-FT 81.7 72.1 73.5 47.6 50.3 58.2 60.3
FLYP 82.6 73.0 71.4 48.1 49.6 58.7 60.2
CLIP† 68.3 61.9 77.7 49.9 48.2 54.2 58.4
FLYP† 82.6 72.6 71.8 48.5 49.8 54.6 59.5

Adapter† 81.5 71.7 74.3 50.3 50.1 55.3 60.3
RAda-FT 81.4 71.9 75.5 51.7 50.4 56.8 61.3

This section provides more details regarding the objectives
and hyper-parameter settings for the two parts.

First, for RAda, the objective is,

argmin
θm

∥M− 1K×D∥2 − log
exp(< 1D, (M ◦R′)∗ >)∑K
i=1 exp(< 1D, (M ◦R′)i >)

,

s.t. R′⊤ =


f1W{1,1} f1W{1,2} . . . f1W{1,K}
f2W{2,1} f2W{2,2} . . . f2W{2,K}

...
...

. . .
...

fDW{D,1} fDW{D,2} . . . fDW{D,K}

 ,

(7)
where the first term is the smooth regularization for the
mask, and the second term is the main classification loss.
Since the text encoder is replaced with a linear classifier, we
use the weight of the classifier (i.e. W ∈ RK×D, which is
initialized by the text feature h) to compute the correspond-
ing rational matrix R′. We train it for 10 epochs with the
learning rate of 0.004 and batch size of 512. Default settings
from [14] are adopted, where the AdamW optimizer [10] is
utilized; weight decay is set to be 0.1; the same warmup
learning strategy is also utilized.

Second, for RAda-FT, the objective is,

arg min
{θ′m,θv,W}

− log
exp(< 1D, (M ◦R′)∗ >)∑K
i=1 exp(< 1D, (M ◦R′)i >)

, (8)

where θ′m is the rational adapter trained after 5 epochs with
the objective in Eq. (7). We train RAda-FT with Eq. (8) for
5 epochs using the same settings as RAda, except for the
learning rate, which is set as 0.000004.

4. Extending Other Fine-Tuning Ideas in FFT
Our experiments demonstrate that RAda can be seamlessly
integrated into the FFT setting by building on the existing
practice [9], effectively enhancing the baseline. This ex-
ploration has received limited attention in other alike fine-
tuning approaches. To provide a comprehensive evalua-
tion of our method, this section investigates extending the
same concept to other fine-tuning approaches within the
FFT framework. Note that not all fine-tuning approaches
are suitable for the FFT setting. For instance, CoOp [17]

relies on the presence of a text encoder, which will be re-
placed by a linear classifier in FFT. Meanwhile, given ad-
ditional inserted prompts will require large computational
resources when updating all parameters, this section will fo-
cus exclusively on experiments extending an adapter-based
fine-tuning approach that operates within the FFT frame-
work without requiring a text encoder. Specifically, we ex-
tend CLIP-Adapter [4] by applying the same training strat-
egy as LP-FT [9]. In this extension, we first train the feature
adapter and then use the weights obtained after 5 epochs as
initialization to fine-tune all learnable parameters. To en-
sure fair comparisons, we adopt the same settings as RAda
for CLIP-Adapter, except for the learning rate, which is ad-
justed by factors of ×0.1,×1,×10 relative to the original
values in our implementation. The learning rate yielding
the best performance on the evaluation sets in the ID data is
selected for reporting results.

We list the experimental results in Table 1. We observe
that CLIP-Adapter can improve the OOD performance for
FT when with the same sequential updating strategy, and it
performs better than LP-FT in 3 out of the 5 OOD datasets
evaluated. This is mainly because CLIP-Adapter can pre-
serve the text features and part of the visual information,
which is helpful for generalization [9], as opposed to LP-FT,
where the text information will be compromised for adapta-
tion in the training data. However, as CLIP-Adapter cannot
leverage fused representations from multiple modalities and
inevitably distorts certain pretrained visual cues, it is infe-
rior to RAda across all OOD datasets, with an average per-
formance gap of 1pp. These results validate the effective-
ness of our design of focusing on the final decision-making
process during the fine-tuning process.

5. Weight and Loss Format Ablation for Mask
Regularization

To assess the sensitivity of RAda to variations in the regu-
larization term Lreg, we analyze its performance across dif-
ferent values of the hyperparameter α in the regularization
loss, formulated as Ladapt + α ∗ Lreg. The results, shown
in Figure 4, indicate that RAda remains robust to different
values of α as long as it is within a reasonable range (i.e.
from 0.5 to 2.5), indicating that we do not need to specifi-
cally tune this hyper-parameter (the default α = 1 suffices).
In practice, for all experiments in the EFT setting, it is fixed
as 1.5 as it yields relatively better results.

Moreover, since there are different alternatives for the
loss terms, we also conduct experiments to analyze if the
adopted L2 regularization is the optimal choice by com-
pring it with L1 and L∞. Results in Table 2 indicate that
using the adopted L2 norm leads to better results than other
alternatives.
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Figure 4. Evaluations of RAda with different weights (i.e. α)
for the mask regularization term. Results are averaged over 11
datasets. RAda is insensitive regarding the different values of α as
long as it is within a reasonable range (i.e. from 0.5 to 2.5).

Table 2. Ablation on loss format for the mask regularization term.
Results are averaged over 11 datasets.

loss format Base Novel HM
L∞ 80.06 73.87 76.84
L1 81.50 73.3 77.21
L2 82.16 74.14 77.94

6. Experiments with Different Backbones
Our default setting in the manuscript employs the ViT-B/16
backbone for the CLIP image encoder. In this section,
we investigate whether RAda can maintain its effective-
ness with alternative backbones. Specifically, we evaluate
RAda with another transformer-based image encoder (i.e.
ViT-B/32 [3]) and two ResNet-based variants of CLIP (i.e.
ResNet-50 and ResNet-101 [6]). As presented in Table 3,
RAda demonstrates consistent improvements over the base-
line across different backbones, achieving significant en-
hancements in base accuracy while exhibiting slight reduc-
tions in novel class performance. In comparison with the
established art CoOp [17], RAda consistently outperforms
it across all backbones in terms of harmonic mean between
the base and novel accuracies, with particularly notable ad-
vantages in the unseen novel classes. These findings af-
firm the robustness and adaptability of RAda across varying
backbone architectures.

7. Experiments with Different VLMs
Following existing arts [4, 16], we conduct experiments
only with CLIP in our manuscript. But note that the rational
matrix [1] is applicable not only in CLIP’s similarity-based
structure, but any cases when there is contrastive (CT) or
softmax losses (SM) , as it represents the inner product’s
intermediate state when computing these losses. This ex-
tends RAda also in other VLMs, such as ALIGN or SigLIP
where CL and SM are involved. To validate the effective-
ness of RAda also in these different VLMs, we conduct ex-
periments in the EFT setting and present the results in Ta-

Table 3. Evaluations of RAda with different backbones for the
CLIP image encoder. Results are averaged over 11 datasets.

Backbone Base Acc. Novel Acc. Hamonic Mean

ResNet-50
CLIP 65.29 69.01 67.09
CoOp 76.56 63.31 69.31
RAda 76.80 67.30 71.74

ResNet-101
CLIP 64.53 69.82 67.07
CoOp 78.31 63.80 70.31
RAda 78.42 68.27 72.99

ViT-B/32
CLIP 67.21 71.65 69.36
CoOp 78.55 66.08 71.78
RAda 76.31 70.45 73.26

ViT-B/16
CLIP 69.34 74.22 71.70
CoOp 82.69 63.22 71.66
RAda 82.16 74.14 77.94

Table 4. Applying RAda in different VLMs. Results are averaged
over 11 datasets.

VLM Base Acc. Novel Acc. Harmonic Mean
CLIP [11]

Zero Shot 69.34 74.22 71.70
RAda 78.42 68.27 72.99

OpenCLIP [7]
Zero Shot 67.61 71.08 69.30
RAda 78.00 73.31 75.58

SigLIP [15]
Zero Shot 78.28 73.75 75.95
RAda 84.13 74.98 79.29

ALIGN [8]
Zero Shot 70.00 66.66 68.29
RAda 75.60 69.79 72.58

ble 4. As seen, RAda is consistently effective even with dif-
ferent VLMs, indicating the broader applicability of RAda.

8. More Attention Layers at the End

RAda attaches one additional attention layer at the end of
CLIP for adaptation. To evaluate if more layers can better
help the performance, we compare the original implementa-
tion with variants that use different attention layers. For the
consecutive layers, we use the combined mask output from
all previous layers as the query, and the rational matrix is
still served as key and values for the new layers. The resid-
ual connection is utilized for the multi-layer implementa-
tion, where the final mask is the combination result of the



Table 5. Evaluations of RAda with different attention layers at-
tached at the end. Results are averaged over 11 datasets.

Base Acc. Novel Acc. Hamonic Mean

Baseline 69.34 74.22 71.70
1 layer 82.16 74.14 77.94
2 layer 82.51 73.84 77.93
3 layer 82.33 71.81 76.71

masks obtained from all previous and current steps:

Mn = M0 +M1 + ...+Mn,

s.t. Mn = Fn
m({Mn−1,R}, θnm),

(9)

where Mn denotes using n layers to obtain the final mask,
Mn is the mask from the n-th layer, θnm is the parame-
ter for the n-th attention layer, and {Mn−1,R} denotes
the query is from Mn−1, key and value are from R in
the attention layer. Note M0 is implemented with M0 =
F0

m({h, f ,R}, θ0m) (i.e. Eq. (6) in the manuscript) given
there is no previous mask information. Similarly, we report
average results across 11 datasets from the base-to-new ex-
periments of the EFT setting. As shown in Table 5, using
more attention layers can improve the base performance but
decrease the zero-shot ability of CLIP, indicating a trade-
off between adapting to seen categories and maintaining the
model’s capacity to generalize to unseen categories. Since
using only one layer for RAda can obtain similar results as
that with two layers, we thus attach only one attention layer
for simplicity in our implementation.
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