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Supplementary Material

A. Time Cost

To assess the efficiency of PlugMark in generating bound-
ary representations (BRoK), we compare average time costs
for BRoKs with different numbers (3) of boundary sam-
ple pairs. As shown in Table I, if each BRoK is com-
posed of only 5 = 1 sample pair, the generation time is
approximately 5 seconds. As [ increases, the time grows
approximately linearly. In other words, for generating the
10 BRoKs as watermarks, the total time required is about
540 seconds. This is a reasonable and feasible time cost for
generating a highly robust zero-distortion watermark for a
diffusion model.

Sample number (3) ‘ Average time(s)

1 5.31
5 23.89
10 54.33
15 77.23

Table 1. Time cost of a BRoK with different number of samples

B. Generalization

To test the generalization capability of PlugMark, we con-
duct experiments on different versions of diffusion models.
Specifically, we evaluated Stable-Diffusion-v1-5,Stable-
Diffusion-v2-1, and Stable-Diffusion-v3-5. As shown in
Table 2, PlugMark achieves excellent matching accuracy
and TPR(FPR=10"%) for post-processed models, demon-
strating strong robustness against fine-tuning and pruning
across these models. Theoretically, as long as a model can
extract intermediate layer features, it can be used for zero-
watermarking with this approach. We see this as an inter-
esting future work.

Model ‘ Origin Fine-tuning (2000 steps) Pruning(p = 0.1)
Stable diffusion-v-1.5 | 100.00/1.00 98.50/0.967 98.33/0.995
Stable diffusion-v-2.1 | 100.00/1.00 98.66/0.971 98.41/0.995
Stable diffusion-v-3.5 | 100.00/1.00 98.00/0.965 97.51/0.990

Table 2. Matching accuracy (%) and TPR(FPR:lO_G)

C. Model Editing (Soups)

We evaluate PlugMark’s robustness against model editing
by merging Stable-Diffusion-v2 models fine-tuned on dif-
ferent downstream tasks for 2000 steps using DreamBooth.
We average their weights as an edited version[59]. As

shown in Table 3, for models merged from 2 fine-tuned
versions, and 3 fine-tuned versions, matching accuracy re-
mains a quite remarkable performance, demonstrating our
method’s robustness against model editing.

Model \ Combinations
Model 1 v Ve Ve
Model 2 v v v
Model 3 v v v

Matching accuracy ‘ 9532 94.89 9427 93.36

Table 3. Matching accuracy (%) of models edited by merging dif-
ferent models fine-tuned for different downstream tasks.

D. Fine-tuning setup

D.1. DreamBooth fine-tuning

The models are fine-tuned using DreamBooth with a learn-
ing rate of 107> ,and the personalized data are shown in
Fig.1. We adhere to the recommended hyperparameters for
other settings[45].

Prompt: ‘A photo of dog on the
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Figure 1. Personalized data for DreamBooth fine-tuning.

D.2. LoRA fine-tuning

We attempt to employ more fine-tuning approaches to
evaluate PlugMark’s robustness. We utilize the Pokemon
dataset [35] for LoRA fine-tuning with a rank of 128 and the
learning rate is 1075.As shown in Table.4, although fine-
tuning using LoRA is specially designed for partial weights
for attention layers, which is more influential to the upblock
features of UNet, PlugMark still maintains a relative strong
robustness against it.

Model \ 100 steps 200 steps 2000 steps
Stable diffusion-v-1.5 1.000 0.994 0.960
Stable diffusion-v-2.1 0.996 0.995 0.971
Stable diffusion-v-3.5 0.997 0.990 0.957

Table 4. TPR(FPR=10"°) of Diffusion models using LoORA



E. Impact of knowledge extractor choice

The results are in Table 5. Since decision boundaries are re-
quired, we set different classifier architectures as the knowl-
edge extractor (DKe). When the classification precision sur-
passes 93%, For any DKe structure, the generated BRoK
can effectively represent the boundaries and result in high
accuracy.

DKe structure ResNet-18  MobileNetV2  EfficientNet-BO  ResNet-34

DKe precision(%) 97.06 93.16 95.13 97.49

Matching accuracy(%) ‘ 100.00 98.78 100.00 100.00

Table 5. Matching accuracy (%) with different DKe

F. Selection of diffusion timestep .

As shown in Table 6, compared to later timesteps, ear-
lier ones indeed perform better. However, if all selected
timesteps are earlier, it may lead to insufficient coverage
of the model’s knowledge, resulting in reduced robustness
against fine-tuning. The entire range guarantees full cover-
age, and uniform sampling further ensures that every stage
is adequately covered.

. ‘ Origin Fine-tuning (1000 steps)
Timestep Range ‘ uniform random uniform random
0-100 99.82 99.20 95.03 94.85
100-500 99.71 98.13 95.12 93.89
500-1000 99.18 98.05 94.83 93.13
0-1000 100.00 99.33 98.83 95.74

Table 6. Matching accuracy (%) with different timestep ranges

G. Additional references on diffusion-native
watermarking methods.

We add comparative experiments in Table 7. PlugMark sig-
nificantly outperforms other methods, as they are not de-
signed for fine-tuning.

Matching accuracy(% )T/TPRT(FPR:IO_G)

Method FID| Origin Fine-tuning 1000 steps
Gaussian Shading [65] | 24.63  100.00/1.000 52.13 /0.002
WMAdapter [5] 2478  98.00/0.999 -
PRC-watermark [18] | 24.31  99.55/1.000 51.22/0.003
PlugMark 24.25  100.00/1.000 98.83/0.995

Table 7. Additional comparison with diffusion-native watermark-
ing methods

H. Discussion

In the downstream fine-tuning tasks of diffusion models,
it is common to fine-tune not only the UNet but also

other components such as the VAE decoder, text encoder,
and other modules. Since Plugmark primarily targets the
uniqueness of features within the UNet, fine-tuning these
other components has minimal impact on the watermark
verification process. Consequently, we believe this algo-
rithm can exhibit strong adaptability to various fine-tuning
tasks. Furthermore, this plug-and-play zero-watermarking
mechanism can be applied to various models without in-
troducing additional perturbations or disrupting the model’s
inherent structure, making it suitable for complex models
composed of multiple components.

Additionally, we believe that the idea of treating interme-
diate features with unique representational capabilities as a
form of distinctive knowledge and using boundary samples
to uniquely characterize them can be extended to various
models beyond diffusion models. Extensions, particularly
for large language models with unique parametric architec-
tures, will be quite meaningful. We consider these ideas as
interesting avenues for future work.

I. TPR with a Fixed FPR

We assume there are a total of ~ sample pairs s =
{(image;, text;); }'to be verified for a model in PlugMark.
For other methods, we assume a -bit binary watermark
s € {0,1}" is embedded. All watermarking techniques are
regarded as single-bit schemes using a fixed watermark s.
A threshold 7 is preset within the range 0 to . A model is
identified as watermarked if the accuracy score Acc(s, s’)
reaches or exceeds 7. Previous research[67] assumed that
the extracted watermark results s/, ..., s’v from negative
models follow a random and uniform distribution, where
each bit s} can be described by a Bernoulli process with
a success probability of 0.5. Consequently, the accuracy
Acc(s, ") conforms to a binomial distribution with param-
eters (k,0.5). Based on this distribution, the false positive
rate (FPR) is defined as the likelihood that Acc(s, s) for a
negative model surpasses the threshold 7. This probability
can be represented through the regularized incomplete beta
function B, (a;b):
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To ensure an FPR of 1075, we determine the appropri-

ate threshold 7 and assess the true positive rate (TPR) us-

ing 300 post-processed models for PlugMark and 1000 wa-

termarked images for the compared black-box models. As

shown in Table 7, our method demonstrates remarkable per-
formance.

(T+1,k—7).
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