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1. Experiments

Settings. We utilize the ShapeNet [1] for pre-training. To
obtain a dense depth map, the input point number N is set
as the baseline method. The number of the projection view
K is set to 3 and the depth map size is set as 224×224.
Random scaling and random rotation are implemented as
data augmentation during pre-training. We project point
clouds into multi-view after the augmentation. Our method
employs an AdamW optimizer [9] and cosine learning rate
decay [8]. The network is trained for 300 epochs with a
batch size of 128. The initial learning rate, weight de-
cay, and mask ratio are set to 2 × 10−4, 0.05, and 0.7.
The scale for 3D and 2D modality is [2, 4, 8, 16, 32, 64] and
[6, 12, 24, 49, 98, 196].

Few-shot Learning. We conducted few-shot learning
experiments on the ModelNet40 dataset [18] using the n-
way, m-shot setting, following the protocol of Point-MAE.
During training, we randomly selected n classes and m ob-
jects from each class. During testing, we randomly selected
20 unseen objects from each of the n classes for evalua-
tion. We conducted 10 independent experiments for each
setting and reported the mean accuracy with standard devi-
ation. The results of our fine-tuned few-shot classification
are shown in Table 1. Our method outperformed the base-
line and state-of-the-art methods in all settings.

Linear SVM Result To evaluate the transfer capacity,
we directly utilize the features extracted by I2P-MAE’s en-
coder for linear SVM on the synthetic ModelNet40 [18]
without any fine-tuning or voting. The results on Model-
Net40 are shown in Table 2. It shows that our RECON
outperforms the last SOTA method I2P-MAE [22] by 0.3%
even without using pre-trained foundation models. This im-
provement in SVM classification performance underscores
the efficacy of our approach in learning superior quality
3D representations and highlights the value of the inherent
multi-view property of 3D data.

2. Methods Comparison

Comparison with I2P-MAE [22], ReCon [11], and
ShapeLLM [12]. I2P-MAE, ReCon, and ShapeLLM focus

primarily on two types of features: 3D geometric features
and semantic/textual representations. They employ MAE-
based structures to reconstruct the original point clouds,
thereby capturing detailed 3D geometric data. Addition-
ally, they utilize techniques such as contrastive learning or
knowledge distillation to extract semantic and textual fea-
tures from 2D images and language models. These meth-
ods directly adopt existing 3D MAE frameworks specif-
ically, I2P-MAE utilizes Point-M2AE, while ReCon and
ShapeLLM leverage Point-MAE for geometric representa-
tion and their innovation lies in the novel use of foundation
models for knowledge distillation.

I2P-MAE performs pixel-to-3D token knowledge distil-
lation by adding additional layers after the M2AE encoder,
calculating MSE loss between the point tokens and 2D
pixel-level features derived from foundation models. Re-
Con uses Point-MAE as the base structure to reconstruct
original point clouds from masked point cloud inputs, while
also incorporating instance-level contrastive learning to dis-
till knowledge from both text and image foundation mod-
els. ShapeLLM builds upon ReCon by using larger mod-
els with more parameters, leveraging large language mod-
els to enable advanced 3D reasoning. In contrast, our ap-
proach focuses on advancing geometric learning in 3D self-
supervised learning (SSL), emphasizing the use of the in-
herent multi-view attributes in point cloud data to enhance
geometric understanding, solely within the 3D modality.
Due to the fundamental differences in goals and methodolo-
gies, a direct comparison with I2P-MAE and ReCon would
not provide a fair evaluation.

Comparison with 3D Geometric Learning SSL Meth-
ods. Our work focuses on 3D geometric learning with-
out leveraging foundation models, similar to methods like
Point-M2AE [21], Point-GPT [3], Pi-MAE [2], Joint-
MAE [6], and TAP [15], which aim to learn pure 3D ge-
ometric representations without relying on knowledge dis-
tillation from foundation models. Existing MAE-based 3D
geometric learning methods generally follow two modifica-
tion directions: (1) Encoder structure modification, as seen
in methods like Point-M2AE and Point-GPT, and (2) Incor-
porating 2D information into the reconstruction process, as
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Method
Foundation Model 5-way 10-way

Needed 10-shot 20-shot 10-shot 20-shot

Point-BERT [20] × 94.6 ± 3.1 96.3 ± 2.7 91.0 ± 5.4 92.7 ± 5.1

Point-MAE [10] × 96.3 ± 2.5 97.8 ± 1.8 92.6 ± 4.1 95.0 ± 3.0

Joint-MAE [6] × 96.7 ± 2.2 97.9 ± 1.8 92.6 ± 3.7 95.1 ± 2.6

Point-M2AE [21] × 96.8 ± 1.8 98.3 ± 1.4 92.6 ± 5.0 95.0 ± 3.0

TAP [15] × 97.3 ± 1.8 97.8 ± 1.7 93.1 ± 2.6 95.8 ± 1.0

Ours(Point-MAE) × 97.3 ± 1.9 98.2 ± 1.6 93.2 ± 4.1 96.0 ± 2.7

Ours (Point-M2AE) × 97.6 ± 2.1 98.5 ± 1.3 93.6 ± 3.9 96.1 ± 2.1

ACT [5] ✓ 96.8 ± 2.3 98.0 ± 1.4 93.3 ± 4.0 95.6 ± 2.8

I2P-MAE [22] ✓ 97.0 ± 1.8 98.3 ± 1.4 92.3 ± 4.5 95.5 ± 3.0

ReCon [11] ✓ 97.3 ± 1.9 98.9 ± 1.2 93.3 ± 3.9 95.8 ± 3.0

Table 1. Few-shot classification performance on ModelNet40 [18], measured by the accuracy (%) and standard deviation (%). ∗ denotes
the model without pre-training. [Key: Best results, Second best results.].

Method ModelNet40

Transformer + OcCo [20] 89.6
Point-BERT [20] 87.4
Point-MAE [10] 91.0
Joint-MAE [6] 92.4
Point-M2AE [21] 92.9
I2P-MAE [22] 93.4
Ours + Point-MAE 93.1
Ours + Point-M2AE 93.7

Table 2. Linear SVM Classification on ModelNet40 [18]. We
compare the accuracy (%) of existing self-supervised methods.

done by Pi-MAE, Joint-MAE, and TAP.
Our work follows the second direction but addresses sig-

nificant limitations in existing methods that leverage 2D
information for 3D geometric learning. Specifically, ap-
proaches like Pi-MAE, Joint-MAE, and TAP do not fully
exploit the multi-view properties of 3D point clouds and
their inherently multi-modal attributes. For example, a
point cloud can be directly projected into multi-view images
using pose information. Incorporating masked 2D images
as input, as done by Pi-MAE and Joint-MAE during the
MAE training process, is unnecessary and potentially detri-
mental, as it can cause the network to over rely on visible
2D information to predict masked content rather than de-
veloping a comprehensive understanding of multi-view ge-
ometry, ultimately degrading the quality of learned 3D rep-
resentations. Moreover, TAP uses a pretrained VAE to re-
construct 2D images from 3D inputs but fails to effectively
leverage multi-view information. In contrast, our method

Method OBJ-BG OBJ-ONLY PB-T50-RS

Stage 1 + MAE 92.34 91.88 87.56

Ours 93.32 92.69 88.93

Table 3. Ablation study for the two-stage design.

introduces a unified approach that uses masked point clouds
to reconstruct both multi-view 2D images and the original
point clouds, ensuring a more comprehensive understanding
of 3D geometry while effectively utilizing the multi-view
attributes of 3D data. Furthermore, we propose MSMH de-
coder to better global and local features and a two-stage
self-training method to learn well-aligned representations.
It is worth to mention that during the fine-tuning and in-
ference stages, we remove additional components, such as
the projection layers and MSMH decoder, maintaining the
same architecture as Point-MAE to ensure a fair compari-
son.

3. Additional Ablation Study

The Effectiveness of the Two-stage Framework. As
discussed in previous work [4], latent space prediction is
highly effective for SSL representation learning. Inspired
by this, we introduce latent space prediction into the multi-
modality MAE in this paper. Rather than predicting raw
inputs across diverse modalities, our model uses masked-
view inputs to jointly predict contextualized 2D and 3D
representations within a latent space aligned by a teacher
model with complete-view inputs. This ensures that stu-
dent models learn well-aligned and contextualized repre-
sentations across modalities. Our ablation study, shown in



# Pose Pool Size PB-T50-RS
3 87.17
6 88.29
12 88.93
24 88.54
36 87.76

Table 4. Ablation study for the number of pose pool size on
the 3D object classification tasks in ScanObjectNN dataset.

# Recon View Size PB-T50-RS
1 87.05
2 88.41
3 88.93
4 88.12
5 87.58

Table 5. Ablation study for the number of reconstructed views
on the 3D object classification task in ScanObjectNN dataset.

Image Type PB-T50-RS
Depth Image 88.93

Rendered Image 88.12

Table 6. Ablation study for the image type on the 3D object clas-
sification tasks in ScanObjectNN dataset.

View Configuration PB-T50-RS
Circular 88.93
Spheric 87.97

Spheric & Circular 88.35
Random 87.41

Table 7. Ablation study for the view configuration of the depth images
on the 3D object classification tasks in ScanObjectNN dataset.

Table 3, demonstrates the advantage of this two-stage latent
prediction method. Compared to the direct reconstruction
of masked multi-modality raw inputs in one stage, our ap-
proach achieves 1.37 % improvement.

The Effectiveness of Poses Pool Size. The pose pool
size represents the total number of poses that can be lever-
aged in our 3D to multi-view MAE method. The ablation
study detailed in Table 4 investigates the impact of varying
the number of views in the network on 3D object classifi-
cation performance, using the ScanObjectNN dataset. The
study examines a range of views: 3, 6, 12, 24, and 36 to un-
derstand how they affect classification accuracy. The results
reveal a notable trend: as the number of views increases,
there’s generally an improvement in classification accuracy,
achieving the best performance at 12 views. Beyond this op-
timal point, however, the performance decreases with the in-
crease of projected views. This pattern indicates that while
increasing the number of views contributes positively to the
network’s understanding and representation of 3D objects,
there is a point beyond which additional views do not yield
further benefits. This is because too many views introduce
the redundancy of view specific information, leading to a
slight decrease in the network’s efficiency.

Effectiveness of Image Type. In the ablation study pre-
sented in Table 6 , we analyze two commonly used image
types for 3D understanding: rendered images and depth im-
ages. The results indicate that using depth images yields the
best performance, which aligns with findings from previous
work, such as Joint-MAE.

The Effectiveness of Network Reconstructed View
Numbers. Our method enhances multi-view understand-
ing by randomly selecting several view poses from the pose
pool mentioned above, enabling the model to reconstruct

corresponding multiple projected depth images. This abla-
tion study focuses on finding the optimal number of recon-
structed views for enhancing 3D representation learning in
the ScanObjectNN [14] dataset. We examined the impact
of the number of reconstructed views from one to five on
classification performance in PB-T50-RS setting. Accord-
ing to the results in Table 5, accuracy consistently increases
with the number of views, peaking at 3 views. Beyond
this point, however, the trend indicates a decrease in per-
formance. This suggests that multiple reconstructed views
enhance the network’s understanding of multi-view infor-
mation. However, too many reconstructed views will make
the length of the input sequences processed by the decoder
very large, thus impacting the network’s learning efficiency
and capacity.

The Effectiveness of View Configurations. In the ab-
lation study shown in Table 7, different view configurations
of depth images for our method in 3D representation learn-
ing are analyzed using the ScanObjectNN dataset. The most
common view configurations for depth image projection are
circular which alignes viewpoints on a circle around the ob-
ject [13, 19] and spherical which alignes equally spaced
viewpoints on a sphere surrounding the object [7, 16]. We
test Circular, Spheric, a combination of both, and Random
configurations. The Circular configuration proves most ef-
fective, achieving the highest accuracies of 88.93 in PB-
T50-R, likely due to its comprehensive coverage and con-
sistent viewing angles. The Spheric configuration, while
offering a broad perspective, falls slightly short in compar-
ison. Combining Spheric and Circular views improves per-
formance but does not outperform the Circular configura-
tion alone. The Random configuration shows the least ef-
fectiveness. This study highlights the Circular view config-



Pose Type PB-T50-RS
Index 88.93

Camera Matrix 88.33

Table 8. Ablation study for the pose type on the 3D object classi-
fication tasks in ScanObjectNN dataset.

Rec Type PB-T50-RS
Masked Only 88.93

Full 88.41
Visible Only 87.74

Table 9. Ablation study for the feature reconstruction type on the
3D object classification tasks in ScanObjectNN dataset.

Masking Ratio PB-T50-RS
0.6 88.02
0.65 88.46
0.7 88.93
0.75 88.15
0.8 87.62

Table 10. Ablation study for the masking ratio on the 3D object
classification tasks in ScanObjectNN dataset.

uration’s superiority in providing a balanced and thorough
representation of 3D objects, essential for better representa-
tion learning.

The Effectiveness of Pose Type. The ablation study de-
tailed in Table 8 critically examines the influence of pose
type on the accuracy of 3D object classification within the
ScanObjectNN dataset. It delves into two distinct pose
types: Index and Camera Matrix, assessing their effective-
ness in PB-T50-R setting of the ScanObjectNN dataset. The
Index pose type employs fixed indexes to denote specific
pose views, whereas the Camera Matrix approach directly
inputs the camera matrix into the pose encoding process to
derive pose embeddings. Notably, both pose types demon-
strate commendable performance, with the Index slightly
surpassing the Camera Matrix. This marginal difference un-
derscores the robustness of the classification method to vari-
ations in pose type input, suggesting a flexible adaptability
to different pose representation strategies in 3D representa-
tion learning.

The Effectiveness of Reconstruction Type. In this re-
search, we leverage the student branch to reconstruct the
representations of masked tokens based on guidance from
the teacher branch. Our ablation study, presented in Ta-
ble 9, meticulously evaluates the influence of various recon-
struction (Rec) methodologies on the 3D object classifica-
tion accuracy using the ScanObjectNN dataset. This study
differentiates between three reconstruction types: ’Masked
Only’, ’Full’, and ’Visible Only’. The findings indicate that
focusing on reconstructing only the masked features yields
the most favorable outcomes. In contrast, the approach of
reconstructing only the visible features, similar to the pre-
vious state-of-the-art method I2P-MAE, results in the least
effective performance. These results underscore the effec-
tiveness of our proposed method in more accurately align-

Method PB-T50-RS

Point-MAE 85.18
Point-MAE + GVA 85.48
Point-MAE + MSMH 86.03
Ours (with GVA) 88.29
Ours (with MSMH) 88.93

Table 11. Comparison of different methods on various evaluation
metrics.

ing the latent spaces of the teacher and student models and
the better ability to fully utilize the multi-view information.

The Effectiveness of Masking Ratio. The ablation
study outlined in Table 10 evaluates the effect of differ-
ent masking ratios on 3D representation learning in the
ScanObjectNN dataset. Five masking ratios are tested: 0.6,
0.65, 0.7, 0.75, and 0.8, assessing their impact on perfor-
mance in PB-T50-RS setting in the ScanObjectNN dataset.
The results indicate a clear pattern. As the masking ratio de-
creases from 0.6 to 0.7, classification accuracy consistently
improves. The best performance is observed at a masking
ratio of 0.7, with accuracies reaching 88.93%. However,
reducing the masking ratio further to 0.8 results in a slight
decrease in accuracy. These findings suggest that an op-
timal masking ratio exists, where a balance is struck be-
tween challenging the network sufficiently to learn robust
features and retaining enough information for accurate clas-
sification. Too much masking may obscure critical details,
while too little may not provide enough complexity for ef-
fective learning.

Comparison with GVA and MSMH. The motivations
and implementations of MSMH and Grouped Vector Atten-
tion (GVA) [17] differ fundamentally. While GVA focuses
on improving model efficiency and generalization, MSMH
is designed to effectively capture both local and global con-
textual information by organizing distinct, non-overlapping
local groups at multiple scales within the reconstructed fea-
tures. In terms of implementation, GVA divides only the
value vector into different groups while applying the same
scalar attention weight across them. This design reduces
the number of parameters, thereby enhancing efficiency. In
contrast, MSMH divides the query, key, and value tokens



Figure 1. Visualization of 3D to multi-view masked autoencoder (Stage 1 with MAE). Our method not only can reconstruct point clouds
from masked input but also generate multi-view depth images.

into distinct, non-overlapping local groups and applies self-
attention within each subgroup, rather than across all in-
dividual tokens. Additionally, MSMH introduces a multi-
scale grouping strategy, where smaller groups capture fine-
grained local details, while larger groups capture broader
global context. These multi-scale attention features are then
concatenated to ensure a more comprehensive understand-
ing of both local and global structures. As a result, MSMH
provides a more effective integration of multi-scale spatial
relationships than GVA, leading to superior performance.
To further validate its effectiveness, we incorporated GVA
into our framework for comparison. Experimental results
in Table. 11 indicate that while GVA brings only marginal
improvement, MSMH achieves significantly better perfor-
mance, underscoring its advantage in capturing multi-scale
geometric structures.

4. Visualization

For the second-stage design, our method focuses on fea-
ture reconstruction. Therefore, visualizing the reconstruc-
tion across the entire two-stage process poses significant
challenges. To address this, we provide visualization results
by directly integrating MAE into the stage-one framework,
as detailed in Table 7 of the main paper. The visualization
results are presented in Fig. 1, where each row illustrates
the input point clouds, masked point clouds, reconstructed
point clouds, projected depth images, and reconstructed im-
ages, respectively. Our method demonstrates the ability to
not only reconstruct point clouds from masked inputs but
also generate multiview depth images, highlighting its ca-
pability to effectively capture the intrinsic multi-modal in-
formation of point clouds.
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