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A. Related Work
Large language models (LLMs) has the step-by-step rea-
soning ability [21, 38, 47, 49], which enables them to
solve complex problems by generating a sequence of in-
termediate steps, where each step addresses a simpler sub-
problem, progressively advancing toward the final solution.
For instance, with Chain-of-Thought (CoT) prompting [49],
LLMs answer a question by generating intermediate rea-
soning steps, with each step represented as a thought —
a sequence of textual descriptions detailing the solution
of a sub-problem — leading toward a final solution. En-
couraged by the progress made in LLMs, subsequent work
[14, 38, 39, 63, 64] on multimodal large langauge models
(VLMs) [4, 27, 28, 45] that receive both text and images
as input has focused on enhancing reasoning in multimodal
contexts. Therefore, ensuring the multi-step reasoning abil-
ity of VLMs is an urgent necessity to enable their applica-
tion in complex tasks.

Toward this goal, apart from prompting methods, ad-
vancements in LLMs and VLMs can be categorized into
three directions. First, pre-training mechanism [1, 3, 43] in-
volves training models on extensive textual datasets to de-
velop inherent reasoning abilities. Similarly, pre-training
VLMs, such as Qwen-VL and LLaMA 3.2, equips them
with reasoning skills from multimodal inputs, like visual-
text pairs. Second, the fine-tuning methods [15, 56, 58,
60] are especially prominent, as they adapt the language
model using targeted datasets, enabling specialization in
specific reasoning tasks. For example, MetaMath [58] fine-
tunes LLaMA-2 on a new dataset, MetaMathQA, which is
crafted by rephrasing questions from multiple perspectives
to support comprehensive mathematical reasoning. The
core of fine-tuning usually lies in constructing high-quality
question-response pair datasets with a chain-of-thought rea-
soning process.

Recent advancements in improving the reasoning abil-
ities of LLMs for reliable problem-solving have focused
on verification. This approach addresses the inherent is-
sues of depending on the top-1 result, which often lacks
reliability. By reranking candidate responses, verifica-
tion models enhance the accuracy and consistency of out-
puts. Moreover, these models contribute valuable feed-
back, which is crucial for refining and boosting the per-
formance of LLMs [24, 46, 53]. LLMs can be fine-tuned
to serve as two types of verifiers: outcome reward mod-
els (ORMs) [23, 24, 30, 46, 53] and process reward models
(PRMs). ORMs assign a confidence score to the entire so-
lution, while PRMs assess the reasoning path step-by-step.
For example, when an LLM generates an answer compris-
ing multiple steps toward a solution, an ORM evaluates
the complete answer and outputs a single score, whereas a
PRM assigns a correctness score to each individual reason-
ing step. PRMs offer several advantages, including the abil-

ity to provide precise feedback by pinpointing the exact lo-
cation of errors, which is highly valuable for reinforcement
learning and automatic correction. Additionally, PRMs re-
semble human judgment: if a reasoning step contains an
error, the likelihood of an incorrect final result increases.

A.1. Why Telecommunications Matter?
As discussed above, significant progress in developing both
verification and complex reasoning abilities for problem-
solving in large models is limited to (1) language models
that process textual input and (2) applications within the
mathematical domain. Thus, we focus on the multimodal
large language models (VLMs) on Telecom for the follow-
ing reasons.

First, as artificial intelligence (AI) for science receive
more attention, many works have been proposed to apply-
ing large models in Mathematics, Physics [12, 40], Chem-
istry [50], Biology [61], Environmental Science [55], Neu-
roscience [6], and Healthcare [48]. To the best of our
knowledge, no comprehensive analysis has been conducted
on whether large models can be effectively applied to solve
specific and practical scientific problems in Telecom [18],
a crucial field with wide-ranging impact. Thus, our paper
aims to contribute a first step by offering researchers a snap-
shot of whether large models can be applied to solve prob-
lems in Telecom and to what extent.

Second, existing research [5, 25, 34, 42, 52, 54, 65, 66]
on the applications of large models in Telecom primarily
focuses on general question answering rather than address-
ing specific problems through step-by-step reasoning. Ad-
ditionally, these approaches train or fine-tune LLMs using
textual datasets. For instance, SPEC5G [20] focuses on de-
signing a knowledge-based Q&A system for network proto-
cols, NetEval [37] trains LLMs for network operations, and
TeleQnA [33] provides a benchmark dataset to assess LLM
performance on Telecom knowledge. None of the existing
work has kept pace with the recent advancements in the
mathematical reasoning capabilities of LLMs. Specifically,
for practical and specialized problems in Telecom, such as
channel capacity calculation, signal-to-noise ratio compu-
tation, and waveform analysis, it remains unclear whether
large models can perform step-by-step reasoning to reach
a solution and whether process supervision can ensure reli-
able problem-solving.

Third, unlike mathematical problems that are typically
expressed through textual sentences, Telecom problems of-
ten include supplementary images that provide essential in-
formation alongside the text. Consequently, this domain
introduces the challenge of implementing step-by-step rea-
soning and verification in VLMs. Even though the MMMU
[59] dataset includes the Tech & Engineering subject, where
questions are paired with images, it lacks enhancements
for multi-step reasoning and does not provide correctness



Table 4. Comparison of our RMultiplex200K dataset with other state-of-the-art related datasets or works.

Text Image Step-by-step Process Supervision Annotation Challenging
Mathematics

GSM8K [10] X Easy
MATH [17] X X Medium
TheoremQA [9] X X X Hard
WizardMATH [32] X X Medium
MathInstruct [60] X X Medium
MetaMath [58] X X Medium
PRM800K [24] X X X Medium
MATH-SHEPHERD [46] X X X Auto Medium
MATHVISTA [31] X X Hard

Telecommunications
MMMU [59] X X X(partial) Hard
SPEC5G X Easy
NetEval [37] X Easy
TeleQnA [33] X Easy
NetLLM [51] X X Hard
Ours X X X X Auto Hard

scores for process supervision. Furthermore, the prob-
lems in MMMU may not be challenging enough to effec-
tively evaluate VLMs in practical scientific applications.
Therefore, by analyzing VLMs in the context of Telecom
problem-solving, we aim to: 1) comprehensively evalu-
ate VLMs in a domain that features challenging scientific
problems, domain-specific concepts, and complex reason-
ing logic, 2) provide multimodal problems where both im-
ages and text are essential, making visual understanding a
critical component of problem-solving, and 3) demonstrate
the effectiveness of process supervision in enhancing VLM
performance.

Finally, we present a comparison between our RMul-
tiplex200K dataset and other state-of-the-art or related
datasets in Tab. 4.

B. Data Details
B.1. Overview
RMultiplex200K comprises a total of 7,000 problems, with
5,000 designated for training and 2,000 for testing. These
problems are categorized into five main areas: Wireless
Communication (WC), Satellite Communication (SC), Net-
work Theory and Optimization (NTO), Information Se-
curity and Encryption (ISE), and Communication Signal
Processing (CSP). Specifically, WC includes five subcate-
gories, SC has four subcategories, NTO features five sub-
categories, and both ISE and CSP are divided into five sub-
categories each. The number of training problems for the
five categories is distributed as 1,300, 600, 1,400, 650, and
1,050, respectively. The corresponding number of test prob-

lems is 520, 240, 560, 260, and 420, respectively. The aver-
age number of reasoning steps required to solve each prob-
lem in these categories is 9, 8, 11, 9, and 12, respectively.

Wireless Communication (WC) contains five categories:
• Wireless Channel Characteristics and Modeling.
• Modulation and Coding Techniques.
• Advanced Antenna and Spatial Techniques.
• Multicarrier and Spread Spectrum Techniques.
• Multiuser and Networked Wireless Systems.

Satellite Communication (SC) contains four categories:
• Satellite Orbits, Launch, and Operations.
• Satellite Hardware and System Design.
• Satellite Communication and Link Design.
• Applications of Satellite Technology.

Network Theory and Optimization (NTO):
• Graph Theory in Networks.
• Resource Allocation and Scheduling.
• Optimization Techniques in Networks.
• Queuing Theory and Network Performance Analysis.
• Network Control and Stability.

Information Security and Encryption (ISE) contains five
categories:
• Foundations of Cryptography and Number Theory.
• Symmetric and Asymmetric Encryption Techniques.
• Cryptographic Data Integrity and Authentication.
• Trust and Key Management Mechanisms.
• Network and Internet Security.

Communication Signal Processing (CSP) contains five
categories:



• Signal Representation and Analysis.
• Transform Techniques and System Analysis.
• Filter Design and Implementation.
• Sampling, Conversion, and Multirate Signal Processing.
• Stochastic Signal Processing and System Design.

For these categories, the number of generated samples
labeled with step-wise correctness scores for training is
48,000, 15,000, 63,000, 22,000, and 52,000, respectively.
For the RMultiplex200K testbed, we generated 16,600,
5,400, 24,200, 8,700, and 21,800 samples for these cate-
gories, respectively.

B.2. Instructions
Data Privacy: Data is collected from open-source and pub-
licly available resources, including quizzes, textbooks, and
online documents. While using Mathpix [35] for data ex-
traction, we strictly comply with the copyright and licensing
regulations of each source. More importantly, the dataset is
used solely for research purposes, with no financial gains
involved.
Data Format: All textual data in RMultiplex200K is for-
matted in LaTeX style, while images are stored in the “.jpg”
format. We ensure that each problem includes one or more
images and that the difficulty level meets or exceeds college
standards. Additionally, a dedicated researcher is responsi-
ble for verifying the accuracy of the data by comparing the
collected LaTeX problems with the original sources.
Data Structure: The data structure includes two types: a
solution sample and a regular sample. A solution sample
comprises the question, the image, the raw answer, and the
decomposed and generated reasoning steps, each with la-
beled correctness scores. In contrast, a regular sample con-
tains the question, the image, one reasoning step, the previ-
ous steps, and a correctness label. Therefore, in our RMul-
tiplex200K database, the data is stored as solution samples
with the “json” format, shown as Fig. 11.
Data Description: To save the json file, the naming conven-
tions follow “category-subfield-ID.json”. The correspond-
ing images are stored in a folder named “category-subfield-
ID-images.json”. It is important to note that most of the
subfield components in the solution samples are missing.
This is because, during data extraction from the documents,
identifying the correct subfield for the data has proven chal-
lenging. This issue will be addressed in the future.

C. Details of the ApPA
C.1. Algorithm Design
The implementation of the automatic plan-based pro-
cess annotation (ApPA) mechanism relies on the advanced
VLMs, GPT-4o mini, which is prompted for answer de-
composition, plan summarization, and reasoning genera-
tion. The algorithm of plan-based reasoning generation

Figure 11. Illustration of the structure of the solution sample in the
RMultiplex200K.

with Monte Carlo Tree Search (MCTS) is presented in Al-
gorithm 1.

C.2. Prompts of ApPA
Prompt for the Answer decomposition I1:
• System Prompt. You are an expert in breaking down an

answer to a Telecom question into multiple logical rea-
soning steps without changing the answer’s words or sen-
tences. Carefully read the given question and the an-
swer, then decompose the answer into individual reason-
ing steps. Ensure each step is not small and thus con-
tains a complete computation, analysis, or design process.
Each step should be strictly extracted from the given an-
swer without making any changes. Please only add the



Algorithm 1: Process annotation in ApPA
Input: VLM p✓ , Input (Q,A,V).
Output: Optimized P.

// Answer decomposition
1 z1...n ⇠ p✓ (z1...n|I1 (Q,A, E))
// Plan generation

2 for i 1 to n do
3  i ⇠ p✓ ( i|I2 (Q,V, z1...i, S))
4 end
// Reasoning generation

5 z0
0 = (Q,A,V), j = 0

6 while not z0
j

reaches solution do
7 Get indexes J of child nodes for z0

j

8 if |J | == M
9 // Selection of MCTS

10 Compute the UCT scores cj+10 , 8j + 10 2 J
11 Select node j + 1⇤ with the best UCT score
12 Add the selected node as z0

j+1 = z0
j+1⇤

13 else
14 // Expansion of MCTS
15 Generate M child nodes for j based on  j+1

16 z0
j+1 ⇠ p✓

�
z0
j+1|I3

�
Q,V, z0

1...j , j+1

��

17 Randomly select node from M child nodes
as z0

j+1

18 break
19 end
20 j = j + 1
21 end
22 // SimulationRollOut of MCTS
23 while not z0

j
reaches solution do

// Generate the next reasoning step
with VLM

24 z0
j+1 ⇠ p✓

�
z0
j+1|I3

�
Q,V, z0

1...j , j+1

��

25 j = j + 1
26 end
27 . Backpropagate 1 (y, zn) to visited

nodes.

Step ID before each decomposed step, such as ’Step 1:’
or ’Step 2:’.

• I1: {Question}\n\n{Question}\n\nPlease decompose
the given answer into logical reasoning steps. Please en-
sure: 1). Each step should not be small but large enough
to only present the complete logic and contain a complete
computation, analysis, or reasoning. 2). Use as few rea-
soning steps as possible. 3). Be careful not to make each
step so small that it contains only a single calculation or a
simple statement. 4). The content of each step should di-
rectly be extracted from the given answer without making

any changes. 5). Do not change the words or sentences of
the answer while decomposing it into steps.
Prompt for the Plan generation I2:

• System Prompt. You are an expert in identifying, extract-
ing, and summarizing the plan that underpins one rea-
soning step. The summarized plan should be a general-
purpose reasoning instruction and, thus, is a high-level,
question-agnostic principle. Please get such a plan con-
taining the highest-level ideas, principles, rules, or the-
orems from the given reasoning step. Start by review-
ing the given question and any previous reasoning steps
already taken, then directly summarize the plan of the
given reasoning step. Please summarize the plan directly
and briefly, avoiding including the specific contents of the
given question or any reasoning steps.

• I1: {Question}\n\nAnswer:\n{Existing
Steps}\n\nLet’s summarize the plan of the Step {}
and directly generate the plan, which is a brief, high-
level, question-agnostic principle, without including any
question or reasoning step content.
Prompt for the Plan generation I3:

• System Prompt. You are an expert in following the given
plan to generate the logical reasoning step for solving
complex problems clearly and precisely. Your task is to
produce a reasoning step based on a high-level, question-
agnostic plan provided to you. Carefully review the given
question and any prior reasoning steps. Then, generate a
reasoning step that logically follows the plan, incorporat-
ing all necessary principles, calculations, or ideas to solve
the problem effectively. Ensure your output is concise,
focused, and directly follows the plan without adding un-
necessary context or framing.

• I1: {question}\n\nAnswer:\n{Existing Steps}\nPlan:
{plan}\n\nFollow the plan to directly generate reason-
ing step {} containing concise computation, exact equa-
tions, and a clear conclusion or an exact solution. Keep
the reasoning step short and as brief as possible without
introducing additional analysis or explanation.

C.3. Full Process of ApPA

In Fig. 12, we present the complete process of Fig. 4 from
the main content. This figure illustrates the raw answer, the
decomposed reasoning steps, and the corresponding plans
summarized by GPT-4o mini. The details of this figure
align with Algorithm 1, which illustrates one iteration of
the MCTS process in our ApPA. As shown by the reason-
ing steps in the gray boxes, for the Telecom problem, even
the advanced GPT-4o mini generally produces incorrect so-
lutions when the plan is not included in the prompt. This
highlights the importance of prompting VLMs with plans
during process annotations.



Question Q: Refer to the block diagram of the
receiver side of the satellite link, as shown in Figure. It is
given that , 

,
. Determine the  ratio in

 referred to the input of the low noise amplifier.

Question

Image

Answer A: [A long pargraph with 927 characters]

The gain as referred to the input of the low noise amplifier . The system noise temperature as
referred to the input of the low noise amplifier can be computed from

, 
, , , , ,

Therefore, 

Therefore, 

Step 1:  \nThe gain as referred to the input of the low noise amplifier is calculated by subtracting the loss from the
amplifier gain: .

Step 2: The system noise temperature as referred to the input of the low noise amplifier can be computed using the
formula:

where , , , , , and 

Step 3: Substitute the given values into the formula to compute :

This results in: 

Step 4: Calculate the  ratio in  using the formula: 
Substitute the values: 
This results in: 

Plan 1:  To determine the effective gain at a specific point in a system, subtract any losses from the
initial gain value.

Plan 2: To compute the system noise temperature referred to a specific point in a system, apply the
Friis formula for noise temperature. This involves calculating the equivalent noise temperature by
considering the contributions from each component in the system, adjusted for their respective
gains or losses. The formula accounts for the noise temperature of each component and the effect
of any preceding losses or gains, ensuring that the noise contributions are appropriately scaled and
summed to reflect their impact at the reference point.

Plan 3: To compute a system parameter, substitute known values into a predefined formula,
ensuring each variable is correctly converted to its appropriate unit or scale, and then perform
arithmetic operations to obtain the result.

Plan 4: To calculate the gain-to-noise temperature ratio in decibels per Kelvin, subtract ten times
the logarithm of the system noise temperature from the gain expressed in decibels.

Raw Anaswer

Decomposed Reasoning Steps: Summarized Plans:

To determine the effective gain at the input of the low
noise amplifier (LNA), we need to account for the loss
before the LNA. The gain of the antenna, , is given
as 60 dB, and the loss  is 0.5 dB. The effective gain

 at the input of the LNA is calculated by subtracting
the loss from the antenna gain:\n\n

To determine the effective gain at the input of the low
noise amplifier, we need to account for the loss 
before the amplifier. The gain  of the amplifier is

given as , and the loss  is . The
effective gain  at the input of the low noise amplifier
is calculated by subtracting the loss from the gain:\n\n

To determine the effective gain at the input of the low
noise amplifier (LNA), we need to consider the gains
and losses up to that point. The gain of the antenna,

, is given as 60 dB, and the loss before the LNA, 
, is 0.5 dB. The effective gain at the input of the LNA is

calculated by subtracting the loss from the antenna
gain:\n\n

#Visit: 0, #Reward: 0 , Score , 
#Visit: 1, #Reward: 0 + 1 , Score  --> 1,  #Visit: 0, #Reward: 0 , Score , 

 \nCalculate the equivalent noise temperature referred to the input of the low
noise amplifier using the formula for cascaded stages:\n\n

\n\nSubstitute the given values:\n\n

\n\n

\n\n

\n\n

\n\nThis is the equivalent noise temperature referred to the input of the low
noise amplifier

#Visit: 1, #Reward: 0 + 1, Score  --> 1, 

Simulation/Rollout based on Plans:Simulation/Rollout without Plans:

Convert  to Linear Scale 

Calculate the System Noise Temperature 
The effective system noise temperature  at the input of the low-noise
amplifier (LNA) is given by: 

First, convert the loss  to a linear scale: 
Now, calculate each term:
1. 
2.  (negligible)
3.  (negligible)

So, the effective system noise temperature is approximately:

Calculate the  Ratio: 

Convert  to ,

Substitute the known values into the formula for the system noise
temperature :
1. Convert  from dB to linear scale: 
2. Calculate each term:
   - .

   - .
   - .
   - .

3. Sum the results to find :

#Visit: 1, #Reward: 0 + 1, Score  --> 1, 

Calculate the  ratio in  using the formula:

Substitute the values: 
Compute the logarithm and the final result:

#Visit: 1, #Reward: 0 , Score , 

#Reward: +1 

#Reward: +1 

MLLM

MLLM

MLLM

MLLM

MLLM

MLLM

Figure 12. Illustration of an MCTS process of ApPA. We specifically present a reasoning path generated by GPT-4o mini, which does not
utilize the plans in the prompt.



D. Details of TC-NAVIGATOR
D.1. Implementations
This section explains how to apply TC-NAVIGATOR to train
a reward model using Qwen-VL-7B, Qwen2-VL-72B, and
Llama-3.2-11B. To incorporate the QA-ViT [13] into the
visual encoder as illustrated in Fig. 5, we heavily rely on
the source code of the package transformers and the pre-
trained models of the Hugging Face. The implementation
details are presented as follows:
Language encoder. The language encoder of RA1 encodes
each reasoning step, formatted as a textual description, into
a single embedding. Specifically, it receives inputs, includ-
ing the reasoning instruction, which contains the
question and the reasoning steps generated so far. This en-
coder can be flexibly chosen from options such as the pre-
existing LLM’s encoder, embeddings, or a designated lan-
guage model. Here, we directly use the textual transformer
as the base model. The encoder first uses the tokenizer of
the base model to obtain the embeddings of the inputs, pro-
ducing a tensor referred to as reasoning states of size
(i+ 1)⇥d, where i is the number of reasoning steps gener-
ated so far, 1 corresponds to the question, and d is the visual
feature dimension of the base model. For simplicity, batch
size is ignored here.
Llama3.2-11B: We use the Llama3.2-11B-Vision model,
identified as “unsloth/Llama-3.2-11B-Vision-Instruct”
on Hugging Face, which is accessed through the
unsloth package. To adapt this model as our TC-
NAVIGATOR, for the RA1, we primarily implement
RA1VisionSdpaAttention, which inherits from
MllamaVisionSdpaAttention in the mllama mod-
ule of the transformers library. Specifically, we add one
additional argument reasoning states along with the
reasoning masks to the forward function and make the
modifications exactly following the MMCLIPAttention
in QA-ViT code †. The main content of the forward
function of the RA1VisionSdpaAttention is shown below:

Subsequently, MllamaVisionSdpaAttention in
the MllamaVisionEncoderLayer of the Llama model
is replaced with RA1VisionSdpaAttention. To
achieve this, we inherit from MllamaVisionEncoder
and modify it to accept the reasoning states
and reasoning states. Finally, we inherit from
MllamaVisionModel and update the code to
incorporate the language encoder and handle the
reasoning instruction.

Therefore, in the forward function of
MllamaVisionModel, the input textual
reasoning instruction is encoded by lan-
guage encoder to get reasoning states and
reasoning states. Then, the self.transformer,

†https://github.com/amazon-science/QA-ViT

which is a MllamaVisionEncoder, receives these two
additional inputs and processes them layer by layer.

RA2 is implemented in the self.global transformer of
the MllamaVisionModel, following similar operations
described in RA1. The only difference is that the input
textual instruction is not reasoning instruction but
step instruction, which contains only the question
and the reasoning step to be evaluated. Therefore, with-
out additional textual encoding, we directly obtain the to-
ken embeddings of step instruction from the base
model, resulting in step stateswith the shape 2⇥L⇥d,
where L is the padded length of the question and the reason-
ing step.

With these simple modifications, we can easily imple-
ment the Llama3.2-11B-Vision model as the base reward
model of our TC-NAVIGATOR. For this QA-ViT compo-
nent, only the gate projection layer is trainable.

Note that we implement Late Fusion, as described in
QA-ViT [13], by applying RA1 and RA2 in the later lay-
ers. Specifically, RA1 is applied to the last 10 layers
of the MllamaVisionEncoder, i.e., self.transformer,
while RA2 is applied to the last 4 layers of the
MllamaVisionEncoder, i.e., self.global transformer.
Qwen-VL-7B: We use the Qwen-VL-7B model,
specifically Qwen/Qwen-VL-Chat from Hugging
Face. Following the exact operations discussed for
Llama3.2-11B, we apply similar modifications for
RA1 to the VisionTransformer by changing the
VisualAttentionBlock of the Qwen model. For the
Late Fusion, we apply RA1 to 30 � 40 layers and RA2 to
41� 48 layers.

D.2. Training
With the RMultiplex200K dataset, our TC-NAVIGATOR can
be trained to be the outcome reward model (ORM) or the
process reward model (PRM). For one solution sample S =⇣

Q,V,A,
�
zk
1...n, c

k
1...n, y

k
 K

k=1

⌘
, ORM is trained by com-

paring the verification score on the whole reasoning process
with the ground truth score, while PRM is optimized based
on the loss calculated by comparing the ground truth score
ci with the predicted score eci, where i is the step index.
ORM. Given Q,V, we have the reasoning process z1...n,
where the final step zn contains a textual description of
the solution, corresponding to the ground truth correctness
score cn. With the Q,V, z1...n as the input, the ORM is to
predict a correctness score c0

n
presenting the confidence of

large models on the whole reasoning process. Therefore,
the ORM is trained with a cross-entropy loss:

LO = cn log c
0
n
+ (1� cn) log (1� c0

n
)

where cn represents the correctness score of the final step.
However, it is used here without error adjustments, as the

https://github.com/amazon-science/QA-ViT


entire reasoning process is considered to verify the correct-
ness of the final step.
PRM. We extract (Q,V,A, z1...n, c1...n, y) from a solution
sample

⇣
Q,V,A,

�
zk
1...n, c

k
1...n, y

k
 K

k=1

⌘
. The PRM pre-

dicts the correctness scores for each reasoning step, out-
putting c01...n. The loss is computed based on the verifi-
cation of all steps, leading to:

nX

i=1

ci log c
0
i
+ (1� ci) log (1� c0

i
)

where i 2 1, . . . , n is the index of the reasoning step. As
discussed in the recent work [46], there is not much dif-
ference between the binary and the three classifications,
and thus we can directly utilize the following equation to
train the model as the binary classification. Compared to
PRM800K [24], which relies on human annotations, our
ApPA can automatically generate reliable annotations for
each reasoning step. Furthermore, unlike another auto-
matic annotation method, MATH-SHEPHERD [46], our
ApPA achieves balanced annotation scores between posi-
tive and negative steps, thereby facilitating the robust train-
ing of PRMs. For instance, in challenging Telecom prob-
lems, MATH-SHEPHERD often generates incorrect rea-
soning steps, resulting in a training set dominated by nega-
tive samples.
Reinforce VLMs. After training TC-NAVIGATOR as a
PRM, it can be used to supervise each reasoning step gen-
erated by VLMs during their training with reinforcement
learning. Specifically, TC-NAVIGATOR provides rewards
at the end of each reasoning step to facilitate step-by-step
Proximal Policy Optimization (PPO), as introduced in prior
work [46]. Therefore, the VLMs are optimized in real-time
based on the reward for each reasoning step, and more im-
portantly, this process significantly reduces the need for hu-
man effort, particularly in the challenging scientific domain
of Telecom.

E. More Qualitative Illustrations
E.1. Examples of RMultiplex200K

In Fig. 14, Fig. 15, Fig. 16, and Fig. 17, we present three ex-
amples from the Wireless Communication (WC) and Satel-
lite Communication (SC) categories of RMultiplex200K.
Specifically, the question, the image, and the ground truth
decomposed reasoning steps are illustrated. Additionally,
we showcase the summarized plans of ApPA and two rea-
soning processes with step-wise correctness scores created
by ApPA. As shown in each figure, every reasoning step is
labeled with a score indicating whether the step is correct
and leads to the correct solution. Scores higher than 0.5
are displayed in black, while scores lower than 0.5 are dis-
played in red to indicate that the reasoning step is largely

incorrect, based on the annotations of ApPA.
First, in Telecom problems, the visual information pro-

vides essential context for problem-solving, making the
challenges posed by Telecom more significant than those in
Mathematics. For each problem, the VLM must compre-
hend both textual and visual inputs to generate the reason-
ing process. Moreover, solving these problems is inherently
difficult, as they typically involve multiple reasoning steps,
each requiring substantial computation and analysis to de-
rive a solution. The number of reasoning steps required in
the three figures is 6, 4, and 6, respectively.

Second, we verify that for step-by-step reasoning in
VLMs, process supervision is crucial to ensure not only
a correct solution but also a reliable reasoning process in
which each step is accurate. For example, in the second
solution sample presented in Fig. 14, both Step 2 and Step
4 are incorrect, yet the overall solution is correct. A simi-
lar phenomenon can be observed in the samples shown in
Fig. 15 and Fig. 16. Due to the frequent occurrence of
such cases—where the reasoning process contains errors
but the final solution is correct—it becomes challenging to
use VLMs for solving new problems and achieving high
problem-solving success rates.

Third, our ApPA is capable of generating reliable correct-
ness scores as labels for each reasoning step in any problem.
After carefully reviewing the reasoning steps, we argue that
the scores assigned by ApPA are reliable and accurately re-
flect the quality of the corresponding step. For instance,
when a reasoning step is completely incorrect, the assigned
score is typically around 0.1 or 0.2. In contrast, a reasoning
step verified as correct by humans is assigned a higher score
by ApPA.

More importantly, based on the plan-based annotation
process, ApPA achieves a balance between positive and
negative samples, where the number of lower correctness
scores is approximately equal to the number of higher ones.
This balance ensures that, when using our RMultiplex200K
dataset for training reward models, the optimization process
avoids the challenges of imbalanced learning, leading to im-
proved performance.

E.2. Examples of TC-NAVIGATOR

After TC-NAVIGATOR is fine-tuned as a reward model us-
ing RMultiplex200K, it can be directly used as a verifier to
evaluate the reasoning steps generated by any VLMs. The
detailed operation is illustrated in Fig. 13. First, as shown
in the upper subfigure, the VLM is prompted with the ques-
tion Q, the corresponding image V, and the instruction R to
generate a reasoning process A0, which is then decomposed
into individual reasoning steps, such as “Step 1:”, “Step 2:”,
and so on. Subsequently, for any reasoning step zi, our TC-
NAVIGATOR receives all existing reasoning steps z1...i and
is prompted to generate the correctness score c0

i
for it. By
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Figure 13. Illustration of how TC-NAVIGATOR works as a veri-
fier to evaluate each reasoning step of an VLM during problem-
solving. The I represents a prompt, which must include the ques-
tion Q and the corresponding image V. Additionally, R serves as
an instruction to guide the VLM in solving the problem through
step-by-step reasoning, while T guides TC-NAVIGATOR in gener-
ating the correctness score for the reasoning step zi.

iteratively repeating this score prediction process, we obtain
correctness scores c01...n for all n reasoning steps.

We present examples demonstrating how the TC-
NAVIGATOR, trained as a PRM using the base model
Qwen-2-VL-72B-instruct, verifies each reasoning step in
the reasoning process generated by Llama-3.2-90B. Specifi-
cally, we present the predicted verification scores along with
the corresponding attention maps, highlighting which parts
of the image are important for the verification process.
Visible attention map. To illustrate the attention map, in-
stead of using tools, such as Transformer-Explainability ‡,
we mainly utilize the density map, which is a standard way
to draw the attention on the image. First, we extract atten-
tion weights from layers that involves RA2 which locates
in the latter layers and build directly the relation between
the image and the reasoning step to be verified, such as
zi. After stacking these weights, we compute their average.
Next, we average the attention tensor across heads and ex-
tract only the image tokens to obtain a tensor with the shape
(batch size, seq len, img tokens), where the batch size and
seq len (only consider the generated textual score) are 1 in
this case. Subsequently, we select the 30 image tokens with
the largest scores, each corresponding to patches of the im-
age. This allows us to create a blank map of the same size
as the image, where each image patch corresponds to one
point on the map, resulting in a total of 30 points. Finally,
we apply a Gaussian filter with a sigma (standard deviation
controlling the spread) of 30 to spread the intensity and cre-
ate a density map. After normalizing the generated density
map, we overlay it on the image to illustrate the attention
shifting of our TC-NAVIGATOR when verifying different
reasoning steps.

Therefore, in Fig. 18, Fig. 19, Fig. 20, and Fig. 21, we
present four examples illustrating how the TC-NAVIGATOR
functions as a verifier to evaluate the reasoning steps gener-
ated by Llama-3.2-90B. Specifically, we showcase two base
models: Qwen-2-VL-72B (QW) and Llama-3.2-11B (Ll).

‡https://github.com/hila- chefer/Transformer-
Explainability

For instance, when Qwen-2-VL-72B appears in an example,
it indicates that TC-NAVIGATOR with Qwen-2-VL-72B has
been fine-tuned as the PRM.

We make three observations. First, using larger VLMs as
the base model for the verifier results in more precise cor-
rectness scores. Second, consistent with our argument for
the TC-NAVIGATOR, VLM verifiers adjust their attention
when evaluating different reasoning steps. This observation
may inspire further exploration of whether we can imple-
ment the Chain of Thought in the visual domain to enable
VLMs to follow a specific logic, adjusting attention across
steps for more reliable reasoning and verification. Third,
we confirm that the conclusion drawn in previous work [24]
— that PRM can ensure reliable problem solving —– also
holds true in the multimodal domain.

https://github.com/hila-chefer/Transformer-Explainability
https://github.com/hila-chefer/Transformer-Explainability


Time-Varying Interference: This problem illustrates the capacity gains that can be
obtained from interference estimation, and how a malicious jammer can wreak
havoc on link performance. Consider the following interference channel, shown in
the image.  
The channel has a combination of AWGN  and interference . We model 
as AWGN. The interferer is on (i.e. the switch is down) with probability .25 and off
(i.e. the switch is up) with probability .75 . The average transmit power is 10 mW ,
the noise spectral density is , the channel bandwidth  is 10 KHz
(receiver noise power is  ), and the interference power (when on) is 9 mW .

Suppose now that the interferer is a malicious jammer with perfect knowledge of
 (so the interferer is no longer modeled as AWGN). Assume that neither

transmitter nor receiver have knowledge of the jammer behavior. Assume also that
the jammer is always on and has an average transmit power of 10 mW . What
strategy should the jammer use to minimize the SNR of the received signal?

Step 1: The jammer should transmit  to completely cancel off
the signal. , , .

Step 2: Now we compute the SNR's as: . This gives:

.

1.0

Question

Image

Step 5: Next we assume that , then:  
  
  

This time our assumption was right. So we get that only two sub-
bands, each of bandwidth 10 MHz, are used for transmission, and
the remaining two with lesser SNRs are left unused.

Step 6: Now, we can find capacity as:  
  

This gives us, .

1.0

Step 1: The jammer should generate a signal  to achieve perfect
destructive interference, fully canceling the transmitted signal and minimizing the
SNR at the receiver.

Step 1. To minimize the SNR of the received signal, the jammer should employ a
strategy of generating an interference signal that is the exact negative of the
transmitted signal . Given that the jammer has perfect knowledge of , it can
produce an interference signal . This results in the received signal being

. Thus, the received signal
consists solely of the noise , effectively canceling out the transmitted signal and
minimizing the SNR to the level of the noise power alone.

Step 2: Calculate the noise power:
. Since the

jammer transmits , the effective signal power becomes zero, yielding
. Thus, the jammer’s strategy results in an SNR of zero.

Step 5: Now assume that . Calculate  using the equation:  
  

Solving this gives:  
  

Since , this assumption is correct. Thus, .

Step 6: Calculate the capacity for sub-bands with SNR  using
.  

For : .  
For : .  

Total capacity: .

Step 3: To compute , we use the power constraint as:  
.  

First, assume that , then we have:  
,  which implies 

.  
So, our assumption was wrong.

Step 4: Now we assume that , then:  
  

  
So, our assumption was wrong again.

1.0

1.0

1.0

1.0

Step 3: Assume the jammer transmits  to perfectly cancel the signal .
The resulting received signal power becomes zero, as the jammer's signal
perfectly negates the transmitted signal. The SNR is then determined solely by
the noise power, which is .
Therefore, the SNR is . This confirms that the jammer's strategy of
transmitting  minimizes the SNR to zero, effectively achieving the goal.

Step 4: Since the assumption that  was incorrect, we now assume
. Re-evaluate the power constraint equation:  

  

Given , , , and , we only consider terms
where :    
Solving for :   ,    

Since , this assumption is consistent. Therefore,
 is the correct value.

0.9

Ground Truth: Decomposed Reasoning Steps

Labeled Reasoning Steps Generated by ApPA

0.1

0.2
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Step 2:  To calculate the SNR, we first determine the effective noise power. Since the
jammer transmits , the received signal is effectively canceled, and the only
remaining noise is the receiver noise. The receiver noise power is given by

. The SNR is then calculated as:  

  

Thus, the jammer's strategy of transmitting  results in an SNR of 100, effectively
minimizing the received signal's SNR by canceling the signal component.

Step 3:  Assume the jammer transmits  to perfectly cancel the signal. Calculate
the resulting SNR at the receiver. The received signal power is effectively zero due to
perfect cancellation, while the noise power remains . Thus, the SNR is:  

  

This confirms that the jammer's strategy of transmitting  minimizes the SNR to
zero, satisfying the constraint of minimizing the received signal's SNR.

Step 4:  
Since the assumption  was incorrect, we now assume . Re-
evaluate the equation:     

Given , , , and , the terms where 
contribute zero. Thus,     

Solving for  gives:     

Since , this assumption is consistent. Therefore, the correct
range for  is .

Step 5:  
Now assume that , then:     

  This assumption is correct, so .

Step 6:  
To find the capacity of the communication channel, we use the sub-bands with SNRs
greater than or equal to the threshold SNR . The capacity  is calculated
as:     where  indexes the sub-bands with .
Thus,  

  

Compute these terms to find the total channel capacity.
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Figure 14. Illustration of the complete reasoning processes from Fig. 1. We present the decomposed ground truth reasoning steps along
with two reasoning processes, each annotated with correctness scores generated by our ApPA.



Consider a system with a transmitter, receiver, and scatterer as shown in the Figure.
Assume the transmitter and receiver are both at heights  and are
separated by distance , with the scatterer at distance  along both dimensions in
a two-dimensional grid of the ground, i.e., on such a grid the transmitter is located at

, the receiver is located at , and the scatterer is located at .
Assume a radar cross section of . Find the path loss of the scattered signal
for  and . Compare with the path loss at these distances if the
signal is just reflected with reflection coefficient .

Step 1:  
  

  
, radar cross section   

  

Step 2:  
Path loss due to scattering  

1.0

Question

Image

1.0

Ground Truth: Decomposed Reasoning Steps

Step 3:  
Path loss due to reflection (using 2-ray model):  

  

For different values of :  
- : ,   
- : ,   
- : ,   

1.0

Step 4:  
Notice that scattered rays over long distances result in tremendous
path loss.

1.0

Step 1: To begin solving the problem, we need to calculate the geometric distances involved in
the path of the scattered signal. Given the positions of the transmitter, receiver, and scatterer, we
can determine the distances using the Pythagorean theorem.

1. **Distance from Transmitter to Scatterer:**  
   The transmitter is at  and the scatterer is at . The distance  from the
transmitter to the scatterer is:  
   

2. **Distance from Scatterer to Receiver:**  
   The scatterer is at  and the receiver is at . The distance  from the
scatterer to the receiver is:  

   

These distances will be used in subsequent steps to calculate the path loss of the scattered
signal.

Labeled Reasoning Steps Generated by ApPA

Step 2:  
To calculate the path loss of the scattered signal, we use the bistatic radar equation for non-
coherent scattering:  

  
where:  
-  is the transmitted power,  
-  and  are the transmitter and receiver antenna gains (both equal to 1 in this case),  
-  is the wavelength,  
-  is the radar cross-section,  
-  and  are the distances from the transmitter to the scatterer and from the scatterer to the
receiver, respectively.  
For the given setup, both  and  are equal to .  
Substituting these into the equation, the received power  becomes:  

  
Simplifying, we find:  

  

  

  
The path loss  in decibels is given by:  

  

  

  
This expression can be used to compute the path loss for each given distance 
and .

Step 3: 
Path loss due to reflection using the two-ray model  

For the reflection scenario with reflection coefficient , the path loss can be calculated
using the formula for the two-ray ground reflection model:  

  

Given , the term , which implies that the direct and reflected paths cancel
each other out perfectly, leading to a theoretical path loss of infinity (complete cancellation).
However, in practical scenarios, this perfect cancellation is rarely achieved due to factors like
imperfect reflection surfaces and antenna characteristics. Thus, the path loss due to reflection is
significantly higher than the scattering scenario, especially at distances where the two-ray model
is applicable.

Step 4:
Analyze the trend in path loss for both scattering and reflection as the distance  increases.  

For scattering:  
- At , path loss is .  
- At , path loss is .  
- At , path loss is .  
- At , path loss is .  

For reflection:  
- At , path loss is .  
- At , path loss is .  
- At , path loss is .  
- At , path loss is .  

Conclusion: As  increases, the path loss for both scattering and reflection increases. However,
the scattering path loss increases more rapidly compared to the reflection path loss, indicating
that scattering becomes less efficient at larger distances compared to reflection.

0.73

0.87

0.85

0.93

Plan 1:  
Identify and define the relevant parameters and constants needed
for the problem, such as frequency, wavelength, gain, and radar
cross section. Calculate any necessary geometric distances or
relationships based on the given configuration.

Plan 2:  
To determine the path loss due to scattering, apply the radar
equation for non-coherent scattering. Calculate the received power
ratio by incorporating the wavelength, antenna gain, radar cross-
section, and the distances from the transmitter to the scatterer and
from the scatterer to the receiver. Use these parameters to compute
the path loss in decibels.

Summarized Plans

Plan 3:  
To determine the path loss due to reflection using the two-ray model,
calculate the received power ratio by considering the reflection
coefficient, antenna gain, and the distance between the transmitter
and receiver. Use the formula that incorporates these factors along
with the wavelength and the geometry of the system. Compare the
calculated path loss with other scenarios to analyze the impact of
reflection on signal propagation.

Plan 4:  
Identify and analyze the trend or pattern in the results obtained from
calculations or observations, particularly focusing on how a specific
variable or condition affects the outcome over a range of scenarios.

Step 1: To solve the problem, we first need to calculate the path loss of the scattered signal
using the radar cross section and the geometry of the system. The radar cross section (RCS) is
given as 20 dB , which is equivalent to a linear scale value of 100  (since

, thus ).

The path loss for a scattered signal can be calculated using the bistatic radar equation, which
involves the distances from the transmitter to the scatterer and from the scatterer to the receiver.
The distances are:

1. Transmitter to scatterer:  
    .

2. Scatterer to receiver:  
    .

For each value of  (1, 10, 100, 1000 meters), calculate these distances and use them to
determine the path loss using the formula for bistatic radar path loss:

where  is the wavelength,  is the distance from the transmitter to the scatterer,  is the
distance from the scatterer to the receiver, and  is the radar cross section.

This step sets up the necessary calculations for determining the path loss for each specified
distance .

Step 2:  
To calculate the path loss due to scattering, use the radar equation for scattered signals:  

  
where  is the transmitted power,  and  are the transmitter and receiver gains (both equal
to 1),  is the wavelength,  is the radar cross-section, and  and  are the distances from
the transmitter to the scatterer and from the scatterer to the receiver, respectively.
Given , , and , the received power  can be expressed
as:  

  

Simplifying, the path loss  in decibels is:  

  

Calculate  for  and .

Step 3: 
Path loss due to reflection using the two-ray model:  
The power ratio for the reflected signal is given by:  

  
Given , the reflection coefficient magnitude is .  
Substitute the values:  
For :  

  
Path loss in dB:  

  
Repeat for  and :  
For :  

  
Path loss in dB:  

  
For :  

  
Path loss in dB:  

  
For :  

  
Path loss in dB:  

  
This completes the calculation of path loss due to reflection for the given distances.

Step 4:
Step 4:  \nAnalyzing the results, we observe that as the distance  increases, the path loss for
both scattering and reflection increases. Specifically, the path loss due to scattering increases by
approximately 40 dB for each tenfold increase in distance, while the path loss due to reflection
increases by approximately 20 dB for each tenfold increase in distance. This indicates that
scattering results in a more significant increase in path loss with distance compared to reflection.
Thus, at larger distances, the scattered signal experiences greater attenuation than the reflected
signal.
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Figure 15. Illustration of a solution sample of a problem from the Wireless Communication (WC) category. Apart from the decomposed
ground truth reasoning steps along with two reasoning processes, each annotated with correctness scores generated by our ApPA, we present
the summarized plans of the ApPA.



The angle formed by the slant ranges of two geostationary satellites from a certain
Earth station as shown in Figure 7.20 is . Determine the longitudinal location of
the two satellites given that the two slant ranges of satellites  and  are 
and , respectively. Given that the radius of the geostationary orbit is equal
to .

Step 1: If  is the longitudinal separation of the two satellites, it can
be computed from  

  

where:  
 slant range of satellite ,  
 slant range of satellite ,  

 geostationary orbit radius ,  
 angular separation of the two satellites as viewed from the Earth

station .

1.0

Question

Image

Step 1: To determine the angular separation between the two satellites, we can
apply the cosine rule for spherical triangles. The cosine rule for spherical triangles
states:

However, in this context, we are dealing with a simpler form of the cosine rule for
the angle between two vectors in space, which is:

where  and  are the slant ranges of the satellites from the Earth station, and
 is the distance between the satellites. Given that the angle  between the slant

ranges is , we can rearrange the formula to solve for :

Substitute the given values , , and :

Calculate :

Compute  to find the distance between the satellites.

0.81

Ground Truth: Decomposed Reasoning Steps

Step 2: Therefore,  

  

Step 3: or  
  

Step 4: or  
   

Step 5: or  
  

Step 6: Therefore, the longitudinal separation between the two
satellites . 

1.0

1.0

1.0

1.0

1.0

Step 2: Substitute the known values into the equation:

Calculate  and simplify the equation to solve for .

Step 3: Substitute the known values into the equation and simplify:

Calculate .
Substitute and simplify:

Simplify further:

Multiply through by  and solve for :

Calculate :

Finally, find  using the inverse cosine function:

Thus, the longitudinal separation of the two satellites is approximately .
 
Step 4: Rearrange the equation to solve for :  

Multiply both sides by :  

Calculate the left side:  

Substitute and simplify:  

Rearrange to solve for :  

Divide by :  

Calculate:  

Thus, .

Step 5: To find the longitudinal separation , use the inverse cosine
function on the calculated value of :  

  

Calculating this gives:  
  

Thus, the longitudinal separation between the two satellites is
approximately .

Step 6: The longitudinal separation of the two satellites is
determined to be approximately , which aligns with the
calculated value of . This is the final result for the longitudinal
location difference between the two geostationary satellites.
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Summarized Plans

Step 1: To determine the angular separation between two points in
space, use the cosine rule for spherical triangles. This involves
calculating the cosine of the angle using the known distances
between the points and the radius of the sphere.

Step 2: Substitute the known values into the given equation to solve
for the unknown variable.

Step 3: Substitute known values into the equation to simplify it, and
isolate the variable of interest by performing algebraic manipulations.

Step 4: To find the value of a trigonometric function for an angle,
rearrange the equation to isolate the desired trigonometric
expression, substitute known values, and solve for the unknown.

Step 5: To determine an angle from its cosine value, use the inverse
cosine function (arccos) on the calculated cosine value to find the
angle in degrees or radians.

Step 6: Determine the final result by interpreting the calculated value
from a previous step as the desired measurement or solution,
ensuring it aligns with the context of the problem..

Labeled Reasoning Steps Generated by ApPA

Step 1: To determine the longitudinal location of the two satellites, we use the cosine rule for spherical
triangles. The cosine rule for spherical triangles states:

In this context,  is the angle between the two slant ranges, which is , and , , and  are the sides of
the spherical triangle, which correspond to the central angles subtended by the slant ranges and the
radius of the geostationary orbit. The sides  and  are the angles subtended by the slant ranges of
satellites  and  at the center of the Earth, calculated as:

Substitute these into the cosine rule to find the longitudinal separation between the satellites.

Step 2: Substitute the known values into the equation to solve for :  
  

Calculate each term:  
1.   
2.   
3.   
Substitute these into the equation:  

  
Simplify and solve for :  

  
Rearrange to isolate :  

  
  

Solve for :  
  

Calculate  and substitute to find .

Step 3: Substitute the known values into the equation and simplify to solve for :  

Calculate each term:  
1.   
2.   
3.   
4.   

Substitute these into the equation:  

Simplify and solve for :  

Solve for  to find the longitudinal separation .

0.73

Step 4: Rearrange the equation to isolate :  

Multiply both sides by :  

Calculate the left side:  

Substitute back into the equation:  

Simplify and solve for :  

Thus, the longitudinal separation  can be found by taking the inverse cosine:  

Calculate  to find the longitudinal separation in degrees.

Step 5: To find the angle , use the inverse cosine function:  
  

Calculating this gives:  
  

Thus, the longitudinal separation between the two satellites is approximately .

Step 6: To find the longitudinal separation , use the inverse cosine function on the
computed cosine value:  

  

Calculating this gives:  
  

Thus, the longitudinal separation between the two satellites is approximately .
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Figure 16. Illustration of a solution sample of a problem from the Satellite Communication (SC) category.



Consider the communication system shown in the Figure. The symbols 
are independent and equally likely, drawn from a BPSK constellation with
amplitude . The channel output can be written as:

where  is real-valued, and  denotes discrete-time, zero-mean real-
valued AWGN with variance . The equalizer output can be written as:

1. Compute the optimum linear MMSE equalizer coefficients  and  in
terms of  and .
2. Compute the MMSE in terms of  and .

Step 1: Since all the parameters in this problem are real-valued,
we expect the equalizer coefficients also to be real-valued. Define  

  
  

We need to find  and  which minimize     

1.0

Question

Image

Ground Truth: Decomposed Reasoning Steps

Step 2: Differentiating  with respect to  and equating to
zero, we get:

where:

Observe the absence of the factor  in the definition of ,
since  is a real-valued random process.  

Step 3:  Similarly, differentiating  with respect to  and
equating to zero, we get:

.  

Step 4:  Solving for  and  from the equations, we get:

where:

Step 5:  Using the principle of orthogonality, the MMSE is:

Step 6:  Note that the MMSE could be reduced by:

1. Increasing the number of equalizer coefficients, and/or  
2. Defining the error signal as , where  is a
positive integer.

Step 7:  From the above discussion, it is clear that computing the
optimum equalizer tap weights is computationally complex,
especially when  is large. In the next section, we discuss the
steepest descent algorithm and the least mean square algorithm
which are used in practice to obtain near-optimal equalizer
performance at a reduced complexity.
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Labeled Reasoning Steps Generated by ApPA

Step 1: To compute the optimum linear MMSE equalizer coefficients  and , we start by defining
the error term  as the difference between the desired signal  and the equalizer output :

Substitute the expressions for  and :

The error term becomes:

The objective is to minimize the expected value of the squared error . This is achieved by setting
the partial derivatives of  with respect to  and  to zero and solving the resulting equations.
This leads to a system of linear equations in terms of  and , which can be solved to find the
optimum coefficients.  

Step 2: To find the optimal coefficients  and  that minimize the mean squared error , we first
express the error term:

The mean squared error is:

To minimize this, we differentiate  with respect to  and , set the derivatives to zero, and
solve the resulting equations. The derivatives are:

These lead to the normal equations:

Solving these equations will yield the optimal coefficients  and .  

Step 3: To find the optimum linear MMSE equalizer coefficients, we differentiate the mean squared
error with respect to  and set it to zero:

This leads to:

Substituting the expression for  and simplifying, we get:

Now, we have the system of equations:
1.   
2. 
These equations can be solved simultaneously to find the values of  and . 

Step 4: Solve the system of linear equations obtained from the differentiation steps to find the optimum
linear MMSE equalizer coefficients  and .
The system of equations derived is:
1.   
2. 
Substitute  and solve these equations simultaneously. From equation 2, express  in terms of

:

Substitute this expression for  into equation 1:

Simplify and solve for :

Now, substitute  back into the expression for :

This provides the explicit solutions for the coefficients  and  in terms of  and . 

Step 5: To compute the MMSE, we use the expression for the mean square error:

Substituting the expressions for  and  from Step 4, we have:

Using the orthogonality principle,  and , the MMSE simplifies to:

Substituting  from Step 4:

Thus, the MMSE is:

Step 6: To further reduce the MMSE, consider increasing the number of equalizer coefficients or
introducing a delay in the error signal definition. However, given the current setup with two coefficients,
the MMSE is already minimized with the derived coefficients  and . Therefore, the MMSE is given
by:

This expression represents the minimized mean square error for the given system configuration,
utilizing the optimal linear MMSE equalizer coefficients.

Step 7: To further optimize the equalizer coefficients  and  with reduced computational complexity,
consider using iterative algorithms such as the Least Mean Squares (LMS) algorithm. This approach
updates the coefficients iteratively based on the error signal :
1. Initialize  and  with small random values.  
2. For each iteration , update the coefficients as follows:  
      
      
   where  is the step size parameter controlling the convergence speed and stability.  
3. Continue the iterations until the change in coefficients is below a predefined threshold or a maximum
number of iterations is reached.
This iterative approach allows for practical implementation in real-time systems, providing near-optimal
solutions with manageable computational resources.
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Step 1: To compute the optimum linear MMSE equalizer coefficients  and , we first define the error
term  as the difference between the desired signal  and the equalizer output :

The objective is to minimize the expected value of the squared error, . Substituting the expression
for  and  into the error term, we have:

Expanding and rearranging terms, the error becomes:

The MMSE solution requires setting the partial derivatives of  with respect to  and  to zero.
This results in a set of linear equations that can be solved to find the optimal coefficients  and . 

Step 2: To find the optimal coefficients  and  that minimize the mean squared error , we first
express the error  as:

Substituting the expression for  and , we have:

Thus, the error becomes:

To minimize , differentiate with respect to  and , set the derivatives to zero, and solve:
1. Differentiate  with respect to :

2. Differentiate  with respect to :

Solving these equations will yield the optimal  and  in terms of  and .
 
Step 3: Differentiate the error expression with respect to  and set it to zero:

Now, solve the system of linear equations obtained from differentiating with respect to  and :

This system can be solved for  and  using matrix methods or substitution, where  are the
autocorrelation terms of . 

Step 4: To solve for the optimum linear MMSE equalizer coefficients  and , we have the following
system of linear equations derived from the conditions for minimizing the mean squared error:
1.   
2. 
Given that , we can express these equations as:

  

To solve for  and , we can use substitution or elimination. From the second equation, solve for :

Substitute this expression for  into the first equation:

Simplify and solve for :

Substitute  back into the expression for :

Thus, the optimum linear MMSE equalizer coefficients are:

Step 5: To compute the MMSE, we use the expression for the error , where
. The MMSE is given by:

.
Substituting the expressions for  and , and using the orthogonality principle, we have:

,
where . Substituting the values of  and  from Step 4:

.
Substitute these into the MMSE expression:

.
Simplifying, we obtain:

.

This is the expression for the MMSE in terms of  and .

Step 6: To compute the MMSE using the derived expressions for  and , substitute these into the
MMSE expression:

Substitute the values of  and :

Thus, the MMSE becomes:

This expression gives the MMSE in terms of  and .

0.88

Step 7: To further optimize the equalizer coefficients with reduced computational complexity, iterative
optimization algorithms such as the steepest descent or least mean square (LMS) algorithms can be
employed. These algorithms iteratively adjust the coefficients  and  to minimize the mean square
error . The LMS algorithm, for instance, updates the coefficients using the rule:

where  is the step size parameter that controls the convergence speed and stability of the algorithm.
By iteratively applying these updates, the coefficients converge to values that approximate the optimal
solution, balancing computational efficiency and accuracy.
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Figure 17. Illustration of a solution sample of a problem from the Communication Signal Processing (CSP) category.



Figure 18. Illustration of the full version of Fig. 9, obtained by performing problem-solving with Llama-3.2-90B while using Qwen-2-VL-
72B (QW) and Llama-3.2-11B (Ll) as verifiers. The problem belongs to the CSP category.



Figure 19. Illustration of the verification process obtained by performing problem-solving with Llama-3.2-90B while using Qwen-2-VL-
72B (QW) and Llama-3.2-11B (Ll) as verifiers. The problem belongs to the CSP category.



Figure 20. Illustration of the verification process obtained by performing problem-solving with Llama-3.2-90B while using Qwen-2-VL-
72B (QW) and Llama-3.2-11B (Ll) as verifiers. The problem belongs to the ISE category.



Figure 21. Illustration of the verification process obtained by performing problem-solving with Llama-3.2-90B while using Qwen-2-VL-
72B (QW) and Llama-3.2-11B (Ll) as verifiers. The problem belongs to the SC category.


	Introduction
	Related Work
	RMultiplex200K without Human Annotation
	Dataset Overview
	Automatic Plan-based Process Annotation
	TC-NAVIGATOR with Step-level Attention
	Experiments
	Main Results
	Reinforce Large Models
	More Analysis
	Concluding Remarks
	Related Work
	Why Telecommunications Matter?


	Data Details
	Overview
	Instructions


	Details of the ApPA
	Algorithm Design
	Prompts of ApPA
	Full Process of ApPA
	Details of TC-NAVIGATOR
	Implementations
	Training

	More Qualitative Illustrations
	Examples of RMultiplex200K
	Examples of TC-NAVIGATOR






