RapVerse: Coherent Vocals and Whole-Body Motion Generation from Text

Supplementary Material

1. Supplemental material

The supplementary material is organized as follows: Sec.
1.1 provides supplemental videos to show additional qual-
itative results; Sec. 1.2 presents additional details of the
network architectures; Sec. 1.3 introduces evaluation met-
rics; Sec. 1.4 provides statistical characteristics of RapVerse
dataset; Sec. 1.5 presents additional ablation studies; Sec.
1.6 shows additional qualitative results; Sec. 1.7 discusses
limitations of the work; Sec. 1.8 discusses broader societal
impacts of the work.

1.1. Website Demo

In order to provide more vivid and clear qualitative results,
we make a supplemental website demo to demonstrate the
generation quality of our proposed system. We encourage
readers to view the results at https://jiabenchen.
github.io/RapVerse/.

1.2. Implementation Details

Motion Tokenizer. We train three separate Vector Quan-
tized Variational Autoencoders (VQ-VAE) for face, body
and hand, respectively. We adopt the same VQ-VAE archi-
tecture based on [2, 5, 18]. For loss functions optimizing
the motion tokenizers, we use the L1 smooth reconstruction
loss, the embedding loss, and the commitment loss. The
commitment loss weight is set to 0.02. In line with [2, 5],
strategies such as the exponential moving average and the
codebook reset technique [14] are implemented to optimize
codebook efficacy throughout the training process. We take
512 for the codebook size and set the dimension of each
code to 512. We set the temporal down-sampling rate to
4. We train the VQ-VAEs with a batch size of 256 and
a sequence window length of 72. We adopt Adam with
B1 = 0.9, B2 = 0.99, and a learning rate of 0.0002 as the
optimizer.

Vocal Tokenizer. For the semantic encoder, we adopt a
BASE 12 transformer of HuBERT [4] pre-trained on the
969-hour LibriSpeech corpus [11]. Following [6, 12], we
derive the feature activations from its sixth layer. This pro-
cess allows the HUBERT model to transform input audio
into a 768-dimensional vector space. Subsequently, we em-
ploy the k-means algorithm with 500 centroids to get quan-
tized discrete content codes. For the FO encoder, a VQ-VAE
framework is utilized to discretize the FO signal into quan-
tized FO tokens. We adopt the Exponential Moving Average
updates during training the VQ-VAE following [1, 12]. We
set the codebook size of the VQ-VAE to 20 entries. More-

over, as the original work directly normalizes the extracted
FO values for each singer respectively, we don’t explicitly
use the singer’s statistics but adopt a windowed convolu-
tional layer with both the audio input (sliced into the win-
dow size) and singer’s embedding as input. Finally, we
adopt a similar architecture as [3] for the singer encoder.

General Auto-regressive Model. The auto-regressive
model consists of a TS Embedder and a Foundation Model.
We use a T5-Large Encoder as our Embedder, with 24 lay-
ers and 16 heads. The Embedder is freezed during founda-
tion model training. The foundation model is based on the
Decoder-only transformer architecture, which has 12 lay-
ers and 8 heads. We use Adam optimizer with 8; = 0.9,

> = 0.99, and a learning rate of 0.0002. We do not use
dropout in our training. Our training batch size is 384 for
100 epochs.

1.3. Evaluation Metrics

To evaluate the motion generation quality, we utilize the fol-
lowing metrics:

1. Frechet Inception Distance (FID): This metric mea-
sures the distribution discrepancy between the ground
truth and generated motions of body and hand gestures.
Specifically, we train an autoencoder based on [2] as the
motion feature extractor.

2. Diversity (DIV): DIV evaluates the diversity of gener-
ated motions, where we calculate the variance from the
extracted motion features.

3. Vertex MSE: Following [16], we compute the mean L2
error of lip vertices between generated face motions and
ground truth.

4. Landmark Velocity Difference (LVD): Introduced by
[17], LVD calculates the velocity difference of generated
facial landmarks and ground truth.

5. Beat Constancy (BC) [7]: BC evaluates the synchrony
of generated motions and singing vocals by calculating
the similarity between the rhythm of gestures and au-
dio beat. Specifically, we extract audio beats using li-
brosa [9], and we compute the kinematic beats as the lo-
cal minima of the velocity of joints. Then the alignment
score is derived from the mean proximity of motion beats
to the nearest audio beat.

For the evaluation of singing vocal generation quality,
the Mean Opinion Score (MOS) is employed. It reflects the
perceived naturalness of the synthesized vocal tones, with
human evaluators rating each sample on a scale from 1 to

5, thereby offering a subjective measure of vocal synthesis
fidelity.
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Figure 1. Lyric length distribution in RapVerse, from segmented clips (left), and original videos (right).
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Figure 2. Audio duration distribution in RapVerse, including segmented audio clips (left), and original audios (right).
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Figure 3. Genre distribution of data in RapVerse. We show the

distribution of different genres under the rap genre.

1.4. Dataset Characteristics

We provide additional statistical characteristics of the over-
all RapVerse dataset. Fig. 1 and Fig. 2 show the distri-
bution of lyric lengths and track durations, respectively. For
lyric lengths and durations, we provide statistics for both the
original soundtracks and the segmented clips in our dataset.
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Figure 4. Additional distribution of data in RapVerse. We show
the distribution of danceability, energy and tempo in our dataset.

Since all audio in our dataset falls under the general rap
genre, we calculated the distribution of different subgenres
within rap in Fig. 3. Following Music4All dataset [15],
we additionally calculate distributions for audio attributes
including tempo (speed of the song measured in beats per
minute), danceability (a value from 0.0 to 1.0 representing
how suitable the song is for dancing) and energy (a value
from 0.0 to 1.0 representing the song’s intensity and activ-
ity) in Fig. 4. All these metadata for each song will be
released for further research use.



Design MPJPE|  PAMPIPE|  ACCL]
K =256 634 39.1 9.14
K =512 60.9 35.4 8.90
K =1024 622 36.8 9.08
Single | 652 38.8 9.32
Ours | 609 35.4 8.90

Table 1. Evaluation of our motion tokenizer. We follow [8] to
evaluate the motion reconstruction errors of our motion VQVAE
model V;,. MPJPE and PAMPJPE are measured in millimeters.
ACCL indicates acceleration error.

1.5. Additional Ablation Studies

Ablation on Motion Tokenizer. We study different designs
of our motion tokenizer by comparing the reconstruction
results. Specifically, we explore VQ-VAEs with different
codebook sizes, and study the effect of using a single
VQ-VAE to model full-body motions instead of multiple
VQ-VAEs for different body parts. As is demonstrated in
Tab. 1, we find that using separate VQ-VAEs for face, body
and hands has lower reconstruction error. And we select a
codebook size of 512 for our final model.

Ablation on Vocal Tokenizer. We also study different de-
signs for our audio tokenizer by comparing the reconstruc-
tion results. Specifically, we explore different codebook
sizes for the semantic encoder by changing the K-Means
number. We also compare the effect with our singer em-
bedding in FO value postprocessing. We use the following
metrics to measure the reconstruction quality of the vocal
tokenizer:

1. Character Error Rate (CER): We use Whisper [13] to
transcribe the ground truth and synthesized audios, and
then take the corresponding ground truth lyrics as the
reference to calculate the CER of the synthesized audios.

2. Gross Pitch Error (GPE): The percentage of pitch esti-
mates that have a deviation of more than 20% around the
true pitch. Only frames considered pitched by both the
ground truth and the synthesized audio are considered.

3. Voicing Decision Error (VDE) [10]: The portion of
frames with voicing decision error, that is, the results
using ground truth and synthesized audio to determine
whether the frame is voiced are different.

The analysis of the results indicates that even the origi-
nal audio exhibits a high CER, which could be attributed to
the rapid speech rate associated with rapping. In some in-
stances, the lyrics may not be distinctly recognizable even
by human listeners. Upon comparing different codebook
sizes, it is observed that they achieve comparable GPE val-
ues. This similarity in GPE is expected since the same FO
model is employed across all codebook sizes. The CER,

Method | CER| GPE| VDE|
GT 41.88 - -

K =100 7639  2.64 1198
K = 500 (Ours) 69.21 229 8.84

K =2000 67.46 254 9.8

Original FO post-process | 68.93  2.71 9.19

Table 2. Evaluation of our unit2wav model. We follow [12]
to evaluate the speech resynthesis errors of our unit2wav model.
WER, GPE, and VDE, expressed as percentages, indicate the char-
acter error rate, the grand pitch error and the voicing decision error.

which serves as a direct measure of the semantic informa-
tion preserved in the code, suggests that larger codebooks
tend to retain more semantic information. However, the dif-
ference in CER between codebook sizes of K = 500 and
K = 2000 is minimal. Given that K = 500 demonstrates
better GPE and VDE, we select K = 500.

Additionally, we ablate a design without the singer em-
bedding in the FO preprocessing, instead normalizing the FO
values for each singer. It shows that this approach resulted
in significantly inferior performance, particularly in pitch
prediction, compared to the modified version that includes
the singer embedding.

Method | MOSt | FID) DIV} | BCt | MSE| LVD}

FastSpeech2 | 2.37+0.14 | - - -

Speech-to-Motion

Talkshow | - | 2521  11.85 | 0485 | 206 931

Text-to-Vocal+Motion

Ours | 3.64+0.15 | 1758 14.08 | 0485 | 203 7.23

Table 3. Comparison with models trained on speech or motion
data. We compare inference results with our model against those
from FastSpeech?2, trained on a standard speech corpus, calculat-
ing the Mean Opinion Score (MOS) with 95% confidence inter-
vals for song samples. Additionally, we compare results with the
Talkshow model, trained on speech-to-motion data, to evaluate our
model’s performance.

Ablation on benefits of Rap Verse dataset. We conduct ad-
ditional experiments, as shown in Table. 3, to demonstrate
the benefits of using our RapVerse dataset. The results show
that models trained on normal speech audio cannot produce
convincing rap motion sequences and vocals. Specifically,
text-to-speech models trained only on speech corpora are
unable to generate plausible singing vocals, as measured
by the MOS metric, compared to our model. Addition-
ally, audio-to-motion models trained on speech-to-motion
dataset fail to produce natural body singing gestures, as
measured by the FID and DIV metrics. This is due to the
inherent differences in motion, rhythm, and expressiveness
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Figure 5. Additional qualitative results. Our method can generate diverse whole-body motions from input lyrics.
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Figure 6. Additional user study on RapVerse dataset. The fig-
ure demonstrates user preference percentage in terms of four as-
pects: holistic realism of human motion, gesture-vocal synchro-
nism, expression-vocal synchronism, and holistic motion diversity.

between singing and speaking. These findings highlight the
necessity of our dataset, which opens up new opportuni-
ties for research in generating coordinated lyrics-driven mo-
tions and vocals. Furthermore, we plan to make our dataset
publicly available to facilitate further advancements in this
promising field.

1.6. Additional Qualitative Results

We show additional qualitative results in Fig. 5. Our
model adeptly generates comprehensive whole-body mo-
tions that embody the essence of the input lyrics. These
include authentic gesture movements that resonate with the
song’s rhythm and synchronized lip motions that articulate

the lyrics.

1.7. Limitations

Currently, our method does not generate root motions; we
focus solely on local body motions, including body gestures
and facial expressions. In the future, we plan to explore
generating root motions to provide a more comprehensive
representation of full-body dynamics. Regarding voice se-
lection, our framework allows for choosing from over a hun-
dred different singer embeddings, offering a wide range of
vocal timbres. We aim to expand this selection further in
future work, allowing for even greater diversity and cus-
tomization in voice generation. At this stage, our model
does not support selecting specific rapping styles or tempos
based on input lyrics. We recognize the importance of this
feature and plan to investigate methods to incorporate style
and tempo selection to enhance the flexibility and expres-
siveness of our system.

1.8. Broader Impacts

This research contributes to advancements in generating
synchronized vocals and human motion from textual lyrics,
aiming to enhance virtual agents’ ability to provide immer-
sive and interactive experiences in digital media. The po-
tential positive impact of this work lies in its ability to cre-
ate more lifelike and engaging virtual performances, such
as in virtual concerts and gaming, where characters can per-



form and react in ways that are deeply resonant with human
expressions. This could significantly enhance user engage-
ment in virtual reality settings, and provide innovative solu-
tions in entertainment industries.

However, this capability carries inherent risks of mis-
use. The technology’s ability to generate realistic human-
like actions and singing vocals from mere text raises con-
cerns about its potential to create misleading or deceptive
content. For example, this could be exploited to produce
fake videos or deepfakes where individuals appear to sing
and perform that never actually occurred, which could be
used to spread misinformation or harm reputations. Recog-
nizing these risks, it is crucial to advocate for ethical guide-
lines and robust frameworks to ensure the responsible use
of such technologies.
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